814 resultados para Drug Reporting-system
Resumo:
The number of new chemical entities (NCE) is increasing every day after the introduction of combinatorial chemistry and high throughput screening to the drug discovery cycle. One third of these new compounds have aqueous solubility less than 20µg/mL [1]. Therefore, a great deal of interest has been forwarded to the salt formation technique to overcome solubility limitations. This study aims to improve the drug solubility of a Biopharmaceutical Classification System class II (BCS II) model drug (Indomethacin; IND) using basic amino acids (L-arginine, L-lysine and L-histidine) as counterions. Three new salts were prepared using freeze drying method and characterised by FT-IR spectroscopy, proton nuclear magnetic resonance ((1)HNMR), Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA). The effect of pH on IND solubility was also investigated using pH-solubility profile. Both arginine and lysine formed novel salts with IND, while histidine failed to dissociate the free acid and in turn no salt was formed. Arginine and lysine increased IND solubility by 10,000 and 2296 fold, respectively. An increase in dissolution rate was also observed for the novel salts. Since these new salts have improved IND solubility to that similar to BCS class I drugs, IND salts could be considered for possible waivers of bioequivalence.
Resumo:
This study investigates the discursive patterns of interactions between police interviewers and women reporting rape in significant witness interviews. Data in the form of video recorded interviews were obtained from a UK police force for the purposes of this study. The data are analysed using a multi-method approach, incorporating tools from micro-sociology, Conversation Analysis and Discursive Psychology, to reveal patterns of interactional control, negotiation, and interpretation. The study adopts a critical approach, which is to say that as well as describing discursive patterns, it explains them in light of the discourse processes involved in the production and consumption of police interview talk, and comments on the relationship between these discourse processes and the social context in which they occur. A central focus of the study is how interviewers draw on particular interactional resources to shape interviewees? accounts in particular ways, and this is discussed in relation to the institutional role of the significant witness interview. The discussion is also extended to the ways in which mainstream rape ideology is both reflected in, and maintained by, the discursive choices of participants. The findings of this study indicate that there are a number of issues to be addressed in terms of the training currently offered to officers at Level 2 of the Professionalising Investigation Programme (PIP) (NPIA, 2009) who intend to conduct significant witness interviews. Furthermore, a need is identified to bring the linguistic and discursive processes of negotiation and transformation identified by the study to the attention of the justice system as a whole. This is a particularly pressing need in light of judicial reluctance to replace written witness statements, the current „end product? of significant witness interviews, with the video recorded interview in place of direct examination in cases of rape.
Resumo:
Industrial development, accompanying human population growth, has had a major role in creating the situation where bio-diverse materials and services essential for sustaining business are under threat. A major contributory factor to biodiversity decline comes from the cumulative impacts of extended supply chain business operations. However, within Corporate Responsibility (CR) reporting impacts on biodiversity due to supply chain operations have not traditionally been given equal weighting with other environmental issues. This paper investigates the extent of CR reporting in managing and publicising company biodiversity supply chain issues by reviewing a cross-sector sample of publicly available CR reports. The report contents were examined for suggestions of industrial sectorial trends in the level of biodiversity consideration. The reporting of environmental management system use within company supply chain management is assessed in the samples and is considered as a mechanism for responsible supplier partnership working.
Resumo:
Poly(e-caprolactone) (PCL) is biocompatible, non-immunogenic and non-toxic, and slowly degrades, allowing sufficient time for tissue regeneration. PCL has the potential for application in bone and cartilage repair as it may provide the essential structure required for bone regeneration, however, an ideal scaffold system is still undeveloped. PCL fibres were prepared using the gravity spinning technique, in which collagen was either incorporated into or coated onto the 'as-spun' fibres, in order to develop novel biodegradable polymer fibres which will effectively deliver collagen and support the attachment and proliferation of human osteoblast (HOB) cells for bone regeneration. The physical and mechanical characteristics and cell fibre interactions were analysed. The PCL fibres were found to be highly flexible and inclusion of collagen did not alter the mechanical properties of PCL fibres. Overall, HOB cells were shown to effectively adhere and proliferate on all fibre platforms tested, although proliferation rates were enhanced by surface coating PCL fibres with collagen compared to PCL fibres incorporating collagen and PCL-only fibres. These findings highlight the potential of using gravity spun PCL fibres as a delivery platform for extracellular matrix proteins, such as collagen, in order to enhance cell adherence and proliferation for tissue repair.
Resumo:
Genomics, proteomics and metabolomics are three areas that are routinely applied throughout the drug-development process as well as after a product enters the market. This review discusses all three 'omics, reporting on the key applications, techniques, recent advances and expectations of each. Genomics, mainly through the use of novel and next-generation sequencing techniques, has advanced areas of drug discovery and development through the comparative assessment of normal and diseased-state tissues, transcription and/or expression profiling, side-effect profiling, pharmacogenomics and the identification of biomarkers. Proteomics, through techniques including isotope coded affinity tags, stable isotopic labeling by amino acids in cell culture, isobaric tags for relative and absolute quantification, multidirectional protein identification technology, activity-based probes, protein/peptide arrays, phage displays and two-hybrid systems is utilized in multiple areas through the drug development pipeline including target and lead identification, compound optimization, throughout the clinical trials process and after market analysis. Metabolomics, although the most recent and least developed of the three 'omics considered in this review, provides a significant contribution to drug development through systems biology approaches. Already implemented to some degree in the drug-discovery industry and used in applications spanning target identification through to toxicological analysis, metabolic network understanding is essential in generating future discoveries.
Resumo:
The enteroinsular axis (EIA) constitutes a physiological signalling system whereby intestinal endocrine cells secrete incretin hormones following feeding that potentiate insulin secretion and contribute to the regulation of blood glucose homeostasis. The two key hormones responsible are named glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Recent years have witnessed sustained development of antidiabetic therapies that exploit the EIA. Current clinical compounds divide neatly into two classes. One concerns analogues or mimetics of GLP-1, such as exenatide (Byetta) or liraglutide (NN2211). The other group comprises the gliptins (e.g. sitagliptin and vildagliptin) which boost endogenous incretin activity by inhibiting the enzyme dipeptidyl peptidase 4 (DPP 4) that degrades both GLP-1 and GIP. Ongoing research indicates that further incretin and gliptin compounds will become available for clinical use in the near future, offering comparable or improved efficacy. For incretin analogues there is the prospect of prolonged duration of action and alternative routes of administration. This review focuses on recent advances in pre-clinical research and their translation into clinical studies to provide future therapies for type 2 diabetes targeting the EIA. © 2009 Bentham Science Publishers Ltd.
Resumo:
Genomics, proteomics and metabolomics are three areas that are routinely applied throughout the drug-development process as well as after a product enters the market. This review discusses all three 'omics, reporting on the key applications, techniques, recent advances and expectations of each. Genomics, mainly through the use of novel and next-generation sequencing techniques, has advanced areas of drug discovery and development through the comparative assessment of normal and diseased-state tissues, transcription and/or expression profiling, side-effect profiling, pharmacogenomics and the identification of biomarkers. Proteomics, through techniques including isotope coded affinity tags, stable isotopic labeling by amino acids in cell culture, isobaric tags for relative and absolute quantification, multidirectional protein identification technology, activity-based probes, protein/peptide arrays, phage displays and two-hybrid systems is utilized in multiple areas through the drug development pipeline including target and lead identification, compound optimization, throughout the clinical trials process and after market analysis. Metabolomics, although the most recent and least developed of the three 'omics considered in this review, provides a significant contribution to drug development through systems biology approaches. Already implemented to some degree in the drug-discovery industry and used in applications spanning target identification through to toxicological analysis, metabolic network understanding is essential in generating future discoveries.
Resumo:
The main aim of this study is to undertake a critical examination of the ethical and developmental performance of an Islamic bank as communicated in its annual reports over a period of 28 years (1983-2010). Islami Bank Bangladesh Limited's (IBBL hereafter) ethical performance and disclosures are further analyzed through interviews conducted with the bank's senior management. The key findings include an overall increase in ethical disclosures during the study period. However, the focus on various stakeholders' needs has varied over time reflecting the evolving nature of the Islamic finance industry over the last three decades. Based on a secular economy, IBBL focused in the first two decades on the "Particular" Shariah compliance disclosure as a way of establishing its reputation and differentiating itself from conventional banks in a dual banking system. Post 2005, the ethical performance and disclosure shifted to more "Universal" disclosures such as sustainability, charity, employees, and community related disclosures signaling responsible conduct and the bank's adoption of a "wider stakeholder approach." However the bank is still failing to provide full disclosure on certain significant categories such as sources and uses of disposable income, thereby contradicting the principles of full and comprehensive disclosure and accountability. In addition, the structure of IBBL's investment portfolio reveals an overreliance on debt-based financial instruments and a shortcoming in fulfilling the developmental and social objectives of Islamic finance. This is evidenced by the "qualified" Shariah Supervisory Board reports that the bank consistently received. This research provides further evidence that Islamic banking and Finance in its current practices reflect the "global" and the "local" influences in an era dominated by global conventional finance. © 2014 Springer Science+Business Media Dordrecht.
Resumo:
The Securities and Exchange Commission (SEC) in the United States and in particular its immediately past chairman, Christopher Cox, has been actively promoting an upgrade of the EDGAR system of disseminating filings. The new generation of information provision has been dubbed by Chairman Cox, "Interactive Data" (SEC, 2006). In October this year the Office of Interactive Disclosure was created(http://www.sec.gov/news/press/2007/2007-213.htm). The focus of this paper is to examine the way in which the non-professional investor has been constructed by various actors. We examine the manner in which Interactive Data has been sold as the panacea for financial market 'irregularities' by the SEC and others. The academic literature shows almost no evidence of researching non-professional investors in any real sense (Young, 2006). Both this literature and the behaviour of representatives of institutions such as the SEC and FSA appears to find it convenient to construct this class of investor in a particular form and to speak for them. We theorise the activities of the SEC and its chairman in particular over a period of about three years, both following and prior to the 'credit crunch'. Our approach is to examine a selection of the policy documents released by the SEC and other interested parties and the statements made by some of the policy makers and regulators central to the programme to advance the socio-technical project that is constituted by Interactive Data. We adopt insights from ANT and more particularly the sociology of translation (Callon, 1986; Latour, 1987, 2005; Law, 1996, 2002; Law & Singleton, 2005) to show how individuals and regulators have acted as spokespersons for this malleable class of investor. We theorise the processes of accountability to investors and others and in so doing reveal the regulatory bodies taking the regulated for granted. The possible implications of technological developments in digital reporting have been identified also by the CEO's of the six biggest audit firms in a discussion document on the role of accounting information and audit in the future of global capital markets (DiPiazza et al., 2006). The potential for digital reporting enabled through XBRL to "revolutionize the entire company reporting model" (p.16) is discussed and they conclude that the new model "should be driven by the wants of investors and other users of company information,..." (p.17; emphasis in the original). Here rather than examine the somewhat illusive and vexing question of whether adding interactive functionality to 'traditional' reports can achieve the benefits claimed for nonprofessional investors we wish to consider the rhetorical and discursive moves in which the SEC and others have engaged to present such developments as providing clearer reporting and accountability standards and serving the interests of this constructed and largely unknown group - the non-professional investor.
Resumo:
This article describes architecture and implementation of subsystem intended for working with queries and reports in adaptive dynamically extended information systems able to dynamically extending. The main features of developed approach are application universality, user orientation and opportunity to integrate with external information systems. Software implementation is based on multilevel metadata approach.
Resumo:
Angiotensin converting enzyme (ACE) inhibitors lisinopril and ramipril were selected from EMA/480197/2010 and the potassium-sparing diuretic spironolactone was selected from the NHS specials list for November 2011 drug tariff with the view to produce oral liquid formulations providing dosage forms targeting paediatrics. Lisinopril, ramipril and spironolactone were chosen for their interaction with transporter proteins in the small intestine. Formulation limitations such as poor solubility or pH sensitivity needed consideration. Lisinopril was formulated without extensive development as drug and excipients were water soluble. Ramipril and spironolactone are both insoluble in water and strategies combating this were employed. Ramipril was successfully solubilised using low concentrations of acetic acid in a co-solvent system and also via complexation with hydroxypropyl-β-cyclodextrin. A ramipril suspension was produced to take formulation development in a third direction. Spironolactone dosages were too high for solubilisation techniques to be effective so suspensions were developed. A buffer controlled pH for the sensitive drug whilst a precisely balanced surfactant and suspending agent mix provided excellent physical stability. Characterisation, stability profiling and permeability assessment were performed following formulation development. The formulation process highlighted current shortcomings in techniques for taste assessment of pharmaceutical preparations resulting in early stage research into a novel in vitro cell based assay. The formulations developed in the initial phase of the research were used as model formulations investigating microarray application in an in vitro-in vivo correlation for carrier mediated drug absorption. Caco-2 cells were assessed following transport studies for changes in genetic expression of the ATP-binding cassette and solute carrier transporter superfamilies. Findings of which were compared to in vitro and in vivo permeability findings. It was not possible to ascertain a correlation between in vivo drug absorption and the expression of individual genes or even gene families, however there was a correlation (R2 = 0.9934) between the total number of genes with significantly changed expression levels and the predicted human absorption.
Resumo:
Central nervous system (CNS) drug disposition is dictated by a drug’s physicochemical properties and its ability to permeate physiological barriers. The blood–brain barrier (BBB), blood-cerebrospinal fluid barrier and centrally located drug transporter proteins influence drug disposition within the central nervous system. Attainment of adequate brain-to-plasma and cerebrospinal fluid-to-plasma partitioning is important in determining the efficacy of centrally acting therapeutics. We have developed a physiologically-based pharmacokinetic model of the rat CNS which incorporates brain interstitial fluid (ISF), choroidal epithelial and total cerebrospinal fluid (CSF) compartments and accurately predicts CNS pharmacokinetics. The model yielded reasonable predictions of unbound brain-to-plasma partition ratio (Kpuu,brain) and CSF:plasma ratio (CSF:Plasmau) using a series of in vitro permeability and unbound fraction parameters. When using in vitro permeability data obtained from L-mdr1a cells to estimate rat in vivo permeability, the model successfully predicted, to within 4-fold, Kpuu,brain and CSF:Plasmau for 81.5% of compounds simulated. The model presented allows for simultaneous simulation and analysis of both brain biophase and CSF to accurately predict CNS pharmacokinetics from preclinical drug parameters routinely available during discovery and development pathways.
Resumo:
The poor retention and efficacy of instilled drops as a means of delivering drugs to the ophthalmic environment is well-recognised. The potential value of contact lenses as a means of ophthalmic drug delivery, and consequent improvement of pre-corneal retention is one obvious route to the development of a more effective ocular delivery system. Furthermore, the increasing availability and clinical use of daily disposable contact lenses provides the platform for the development of viable single-day use drug delivery devices based on existing materials and lenses. In order to provide a basis for the effective design of such devices, a systematic understanding of the factors affecting the interaction of individual drugs with the lens matrix is required. Because a large number of potential structural variables are involved, it is necessary to achieve some rationalisation of the parameters and physicochemical properties (such as molecular weight, charge, partition coefficients) that influence drug interactions. Ophthalmic dyes and structurally related compounds based on the same core structure were used to investigate these various factors and the way in which they can be used in concert to design effective release systems for structurally different drugs. Initial studies of passive diffusional release form a necessary precursor to the investigation of the features of the ocular environment that over-ride this simple behaviour. Commercially available contact lenses of differing structural classifications were used to study factors affecting the uptake of the surrogate actives and their release under 'passive' conditions. The interaction between active and lens material shows considerable and complex structure dependence, which is not simply related to equilibrium water content. The structure of the polymer matrix itself was found to have the dominant controlling influence on active uptake; hydrophobic interaction with the ophthalmic dye playing a major role. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Resumo:
With an ageing population and increasing prevalence of central-nervous system (CNS) disorders new approaches are required to sustain the development and successful delivery of therapeutics into the brain and CNS. CNS drug delivery is challenging due to the impermeable nature of the brain microvascular endothelial cells that form the blood-brain barrier (BBB) and which prevent the entry of a wide range of therapeutics into the brain. This review examines the role intranasal delivery may play in achieving direct brain delivery, for small molecular weight drugs, macromolecular therapeutics and cell-based therapeutics, by exploitation of the olfactory and trigeminal nerve pathways. This approach is thought to deliver drugs into the brain and CNS through bypassing the BBB. Details of the mechanism of transfer of administrated therapeutics, the pathways that lead to brain deposition, with a specific focus on therapeutic pharmacokinetics, and examples of successful CNS delivery will be explored. © 2014 Bentham Science Publishers.
Resumo:
This study identifies and investigates the potential use of in-eye trigger mechanisms to supplement the widely available information on release of ophthalmic drugs from contact lenses under passive release conditions. Ophthalmic dyes and surrogates have been successfully employed to investigate how these factors can be drawn together to make a successful system. The storage of a drug-containing lens in a pH lower than that of the ocular environment can be used to establish an equilibrium that favours retention of the drug in the lens prior to ocular insertion. Although release under passive conditions does not result in complete dye elution, the use of mechanical agitation techniques which mimic the eyelid blink action in conjunction with ocular tear chemistry promotes further release. In this way differentiation between passive and triggered in vitro release characteristics can be established. Investigation of the role of individual tear proteins revealed significant differences in their ability to alter the equilibrium between matrix-held and eluate-held dye or drug. These individual experiments were then investigated in vivo using ophthalmic dyes. Complete elution was found to be achievable in-eye; this demonstrated the importance of that fraction of the drug retained under passive conditions and the triggering effect of in-eye conditions on the release process. Understanding both the structure-property relationship between drug and material and in-eye trigger mechanisms, using ophthalmic dyes as a surrogate, provides the basis of knowledge necessary to design ocular drug delivery vehicles for in-eye release in a controllable manner.