858 resultados para Dose-Response Relationship, Drug.
Resumo:
This study investigated characteristics of optically stimulated luminescent detectors (OSLDs) in protons, allowing comparison to thermoluminescent detectors, and to be implemented into the Radiological Physics Center’s (RPC) remote audit quality assurance program for protons, and for remote anthropomorphic phantom irradiations. The OSLDs used were aluminum oxide (Al2O3:C) nanoDots from Landauer, Inc. (Glenwood, Ill.) measuring 10x10x2 mm3. A square, 20(L)x20(W)x0.5(H) cm3 piece of solid water was fabricated with pockets to allow OSLDs and TLDs to be irradiated simultaneously and perpendicular to the beam. Irradiations were performed at 5cm depth in photons, and in the center of a 10 cm SOBP in a 200MeV proton beam. Additionally, the Radiological Physics Center’s anthropomorphic pelvic phantom was used to test the angular dependence of OSLDs in photons and protons. A cylindrical insert in the phantom allows the dosimeters to be rotated to any angle with a fixed gantry angle. OSLDs were irradiated at 12 angles between 0 and 360 degrees. The OSLDs were read out with a MicroStar reader from Landauer, Inc. Dose response indicates that at angles where the dosimeter is near parallel with the radiation beam response is reduced slightly. Measurements in proton beams do not show significant angular dependence. Post-irradiation fading of OSLDs was studied in proton beams to determine if the fading was different than that of photons. The fading results showed no significant difference from results in photon beams. OSLDs and TLDs are comparable within 3% in photon beams and a correction factor can be posited for proton beams. With angular dependence characteristics defined, OSLDs can be implemented into multiple-field treatment plans in photons and protons and used in the RPC’s quality assurance program.
Resumo:
BACKGROUND: The recreational use of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) among adolescents and young adults has become increasingly prevalent in recent years. While evidence suggests that the long-term consequences of MDMA use include neurodegeneration to serotonergic and, possibly, dopaminergic pathways, little is known about susceptibility, such as behavioral sensitization, to MDMA. METHODS: The objectives of this study were to examine the dose-response characteristics of acute and chronic MDMA administration in rats and to determine whether MDMA elicits behavioral sensitization and whether it cross-sensitizes with amphetamine and methylphenidate. Adult male Sprague-Dawley rats were randomly divided into three MDMA dosage groups (2.5 mg/kg, 5.0 mg/kg, and 10.0 mg/kg) and a saline control group (N = 9/group). All three MDMA groups were treated for six consecutive days, followed by a 5-day washout, and subsequently re-challenged with their respective doses of MDMA (day 13). Rats were then given an additional 25-day washout period, and re-challenged (day 38) with similar MDMA doses as before followed by either 0.6 mg/kg amphetamine or 2.5 mg/kg methylphenidate on the next day (day 39). Open-field locomotor activity was recorded using a computerized automated activity monitoring system. RESULTS: Acute injection of 2.5 mg/kg MDMA showed no significant difference in locomotor activity from rats given saline (control group), while animals receiving acute 5.0 mg/kg or 10.0 mg/kg MDMA showed significant increases in locomotor activity. Rats treated chronically with 5.0 mg/kg and 10.0 mg/kg MDMA doses exhibited an augmented response, i.e., behavioral sensitization, on experimental day 13 in at least one locomotor index. On experimental day 38, all three MDMA groups demonstrated sensitization to MDMA in at least one locomotor index. Amphetamine and methylphenidate administration to MDMA-sensitized animals did not elicit any significant change in locomotor activity compared to control animals. CONCLUSION: MDMA sensitized to its own locomotor activating effects but did not elicit any cross-sensitization with amphetamine or methylphenidate.
Resumo:
INTRODUCTION: Traumatic brain injury (TBI) frequently results in devastating and prolonged morbidity. Cellular therapy is a burgeoning field of experimental treatment that has shown promise in the management of many diseases, including TBI. Previous work suggests that certain stem and progenitor cell populations migrate to sites of inflammation and improve functional outcome in rodents after neural injury. Unfortunately, recent study has revealed potential limitations of acute and intravenous stem cell therapy. We studied subacute, direct intracerebral neural stem and progenitor cell (NSC) therapy for TBI. MATERIALS AND METHODS: The NSCs were characterized by flow cytometry and placed (400,000 cells in 50 muL 1x phosphate-buffered saline) into and around the direct injury area, using stereotactic guidance, of female Sprague Dawley rats 1 wk after undergoing a controlled cortical impact injury. Immunohistochemistry was used to identify cells located in the brain at 48 h and 2 wk after administration. Motor function was assessed using the neurological severity score, foot fault, rotarod, and beam balance. Cognitive function was assessed using the Morris water maze learning paradigm. Repeated measures analysis of variance with post-hoc analysis were used to determine significance at P < 0.05. RESULTS: Immunohistochemistry analysis revealed that 1.4-1.9% of infused cells remained in the neural tissue at 48 h and 2 wk post placement. Nearly all cells were located along injection tracks at 48 h. At 2 wk some cell dispersion was apparent. Rotarod motor testing revealed significant increases in maximal speed among NSC-treated rats compared with saline controls at d 4 (36.4 versus 27.1 rpm, P < 0.05) and 5 (35.8 versus 28.9 rpm, P < 0.05). All other motor and cognitive evaluations were not significantly different compared to controls. CONCLUSIONS: Placement of NSCs led to the cells incorporating and remaining in the tissues 2 wk after placement. Motor function tests revealed improvements in the ability to run on a rotating rod; however, other motor and cognitive functions were not significantly improved by NSC therapy. Further examination of a dose response and optimization of placement strategy may improve long-term cell survival and maximize functional recovery.
Resumo:
Purpose The effectiveness of vertebral augmentation techniques is a currently highly debated issue. The biomechanical literature suggests that cement filling volumes may play an important role in the ‘‘dosage’’ of vertebral augmentation and its pain alleviating effect. Good clinical data about filling volumes are scarce and most patient series are small. Therefore, we investigated the predictors of pain alleviation after balloon kyphoplasty in the nationwide SWISSspine registry where cement volumes are also recorded. Methods All single-level vertebral fractures with no additional fracture stabilization and availability of at least one follow-up within 6 months after surgery were included. The following potential predictors were assessed in a multivariate logistic regression model with the group’s average pain alleviation of 41 points on VAS as the desired outcome: patient age, patient sex, diagnosis, preoperative pain, level of fracture, type of fracture, age of fracture, segmental kyphotic deformity, cement volume, vertebral body filling volume, and cement extrusions. Results There were 194 female and 82 males with an average age of 70.4 and 65.3 years, respectively. Female patients were about twice as likely for achieving the average pain relief compared to males (p = 0.04). The preoperative pain level was the strongest predictor in that the likelihood for achieving an at least 41-point pain relief increased by about 8 % with each additional point of preoperative pain (p\0.001). A thoraco-lumbar fracture had a three times higher odds for the average pain relief compared with a lumbar fracture (p = 0.03). An A.3.1 fracture only had about a third of the probability for average pain relief compared with an A.1.1 fracture (p = 0.004). Cement volumes up to 4.5 ml only had an approximately 40 % chance for a minimum 41-point pain alleviation as compared with cement volumes of at least 4.5 ml (p = 0.007). In addition, the relationship between cement volume and pain alleviation followed a dose-dependent pattern. Conclusions Cement volume was revealed as a significant predictor for pain relief in BKP. Cement volume was the third most important influential covariate and the most important modifiable and operator dependent one. The clear dose-outcome relationship between cement filling volumes and pain relief additionally supports these findings. Cement volumes of [4.5 ml seem to be recommendable for achieving relevant pain alleviation. Patient sex and fracture type and location were further significant predictors and all these covariates should be recorded and reported in future studies about the pain alleviating effectiveness of vertebral augmentation procedures.
Resumo:
Many of the tumorigenic effects that result from neonatal exposure to both natural and synthetic estrogens resemble those found in humans exposed to diethylstilbestrol (DES) in utero. Using this established DES neonatal mouse model, my goal was to investigate long-term molecular and morphological effects of certain polychlorinated biphenyls (PCBs) that are weakly estrogenic in adult mice. Focusing on the cervicovaginal (CV) tract, since this is where tumors develop in the BALB/c mouse, I first assessed the 17β-estradiol (E2) dose-response for expression of lactoferrin (LTF). LTF is a highly inducible estrogen biomarker that is permanently altered in uteri from neonatally treated mice. Treatments were administered via 5 subcutaneous injections beginning within 16 hrs after birth, days 1–5. ^ The ontogeny of LTF expression from mouse CV tracts was determined by examining three different stages of life: pups, immature, and mature mice. Northern RNA analysis and immunohistochemistry showed that neonatal E 2 treatment both increases and decreases LTF expression. Early expression of LTF in the CV tract at all doses occurred in pups. In both immature and adult mice, increased LTF expression was dependent on whether E2 induced ovary-dependent or ovary-independent persistent vaginal cornification. ^ Next, I studied biological responses from neonatally PCB exposed adult mice. As expected, using a neonatal uterine bioassay I showed that 2 ′4′6′-trichloro-4-biphenylol (OH-PCB-30), 2′3′4′ 5-tetrachloro-4-biphenyloI (OH-PCB-61), and OH-PCB-30/61 (50/50 mixture), were estrogenic causing a dose-dependent increase in uterine weight. ^ Long-term effects of OH-PCB 30 [200 μg/pup/day] were most similar to E2 as seen by an increased uterine wet weight in day 50 mice similar to E2 [5 μg/pup/day] (141% and 140% of control, respectively). Another similarity between OH-PCB 30 and E2 neonatally treated mice was found in those sacrificed at 20 months of age. At these same doses CV tract squamous cell carcinoma induction was 43% of E2 treated mice and 47% of OH-PCB 30 treated mice. Differences were noted in adenoaquamous; cell carcinoma development, where 16% of OH-PCB-30 neonatally treated mice developed tumors versus 8% for E2. Based on these results using the neonatal mouse model, I conclude that the OH-PCBs tested are strongly estrogenic and tumorigenic showing dose-response relationships when exposure occurs during development of the reproductive tract in mice. These results may have important implications for risk assessment in determining the effects of xenoestrogens exposure early versus later in life. ^
Resumo:
A detailed microdosimetric characterization of the M. D. Anderson 42 MeV (p,Be) fast neutron beam was performed using the techniques of microdosimetry and a 1/2 inch diameter Rossi proportional counter. These measurements were performed at 5, 15, and 30 cm depths on the central axis, 3 cm inside, and 3 cm outside the field edge for 10 $\times$ 10 and 20 $\times$ 20 cm field sizes. Spectra were also measured at 5 and 15 cm depth on central axis for a 6 $\times$ 6 cm field size. Continuous slowing down approximation calculations were performed to model the nuclear processes that occur in the fast neutron beam. Irradiation of the CR-39 was performed using a tandem electrostatic accelerator for protons of 10, 6, and 3 MeV and alpha particles of 15, 10, and 7 MeV incident energy on target at angles of incidence from 0 to 85 degrees. The critical angle as well as track etch rate and normal incidence diameter versus linear energy transfer (LET) were obtained from these measurements. The bulk etch rate was also calculated from these measurements. Dose response of the material was studied, and the angular distribution of charged particles created by the fast neutron beam was measured with CR-39. The efficiency of CR-39 was calculated versus that of the Rossi chamber, and an algorithm was devised for derivation of LET spectra from the major and minor axis dimensions of the observed tracks. The CR-39 was irradiated in the same positions as the Rossi chamber, and the derived spectra were compared directly. ^
Resumo:
Neurons of the hippocampal dentate gyrus selectively undergo programmed cell death in patients suffering from bacterial meningitis and in experimental models of pneumococcal meningitis in infant rats. In the present study, a membrane-based organotypic slice culture system of rat hippocampus was used to test whether this selective vulnerability of neurons of the dentate gyrus could be reproduced in vitro. Apoptosis was assessed by nuclear morphology (condensed and fragmented nuclei), by immunochemistry for active caspase-3 and deltaC-APP, and by proteolytic caspase-3 activity. Co-incubation of the cultures with live pneumococci did not induce neuronal apoptosis unless cultures were kept in partially nutrient-deprived medium. Complete nutrient deprivation alone and staurosporine independently induced significant apoptosis, the latter in a dose-response way. In all experimental settings, apoptosis occurred preferentially in the dentate gyrus. Our data demonstrate that factors released by pneumococci per se failed to induce significant apoptosis in vitro. Thus, these factors appear to contribute to a multifactorial pathway, which ultimately leads to neuronal apoptosis in bacterial meningitis.
Resumo:
Aluminum phytotoxicity frequently occurs in acid soils (pH < 5.5) and was therefore discussed to affect ecosystem functioning of tropical montane forests. The susceptibility to Al toxicity depends on the sensitivity of the plant species and the Al speciation in soil solution, which can vary highly depending e.g., on pH, ionic strength, and dissolved organic matter. An acidification of the ecosystem and periodic base metal deposition from Saharan dust may control plant available Al concentrations in the soil solutions of tropical montane rainforests in south Ecuador. The overall objective of my study was to assess a potential Al phytotoxicity in the tropical montane forests in south Ecuador. For this purpose, I exposed three native Al non-accumulating tree species (Cedrela odorata L., Heliocarpus americanus L., and Tabebuia chrysantha (Jacq.) G. Nicholson) to increased Al concentrations (0 – 2400 μM Al) in a hydroponic experiment, I established dose-response curves to estimate the sensitivity of the tree species to increased Al concentrations, and I investigated the mechanisms behind the observed effects induced by elevated Al concentrations. Furthermore, the response of Al concentrations and the speciation in soil solution to Ca amendment in the study area were determined. In a final step, I assessed all major Al fluxes, drivers of Al concentrations in ecosystem solutions, and indicators of Al toxicity in the tropical montane rainforest in Ecuador in order to test for indications of Al toxicity. In the hydroponic experiment, a 10 % reduction in aboveground biomass production occurred at 126 to 376 μM Al (EC10 values), probably attributable to decreased Mg concentrations in leaves and reduced potosynthesis. At 300 μM Al, increased root biomass production of T. chrysantha was observed. Phosphorus concentrations in roots of C. odorata and T. chrysantha were significantly highest in the treatment with 300 μM Al and correlated significantly with root biomass, being a likely reason for stimulated root biomass production. The degree of organic complexation of Al in the organic layer leachate, which is central to plant nutrition because of the high root density, and soil solution from the study area was very high (mean > 99 %). The resulting low free Al concentrations are not likely to affect plant growth, although the concentrations of potentially toxic Al3+ increased with soil depth due to higher total Al and lower dissolved organic matter concentrations in soil solutions. The Ca additions caused an increase of Al in the organic layer leachate, probably because Al3+ was exchanged against the added Ca2+ ions while pH remained constant. The free ion molar ratios of Ca2+:Al3+ (mean ratio ca. 400) were far above the threshold (≤ 1) for Al toxicity, because of a much higher degree of organo-complexation of Al than Ca. High Al fluxes in litterfall (8.8 – 14.2 kg ha−1 yr−1) indicate a high Al circulation through the ecosystem. The Al concentrations in the organic layer leachate were driven by the acidification of the ecosystem and increased significantly between 1999 and 2008. However, the Ca:Al molar ratios in organic layer leachate and all aboveground ecosystem solutions were above the threshold for Al toxicity. Except for two Al accumulating and one non-accumulating tree species, the Ca:Al molar ratios in tree leaves from the study area were above the Al toxicity threshold of 12.5. I conclude that toxic effects in the hydroponic experiment occurred at Al concentrations far above those in native organic layer leachate, shoot biomass production was likely inhibited by reduced Mg uptake, impairing photosynthesis, and the stimulation of root growth at low Al concentrations can be possibly attributed to improved P uptake. Dissolved organic matter in soil solutions detoxifies Al in acidic tropical forest soils and a wide distribution of Al accumulating tree species and high Al fluxes in the ecosystem do not necessarily imply a general Al phytotoxicity.
Resumo:
BACKGROUND Mutations in the SCN9A gene cause chronic pain and pain insensitivity syndromes. We aimed to study clinical, genetic, and electrophysiological features of paroxysmal extreme pain disorder (PEPD) caused by a novel SCN9A mutation. METHODS Description of a 4-generation family suffering from PEPD with clinical, genetic and electrophysiological studies including patch clamp experiments assessing response to drug and temperature. RESULTS The family was clinically comparable to those reported previously with the exception of a favorable effect of cold exposure and a lack of drug efficacy including with carbamazepine, a proposed treatment for PEPD. A novel p.L1612P mutation in the Nav1.7 voltage-gated sodium channel was found in the four affected family members tested. Electrophysiologically the mutation substantially depolarized the steady-state inactivation curve (V1/2 from -61.8 ± 4.5 mV to -30.9 ± 2.2 mV, n = 4 and 7, P < 0.001), significantly increased ramp current (from 1.8% to 3.4%, n = 10 and 12) and shortened recovery from inactivation (from 7.2 ± 5.6 ms to 2.2 ± 1.5 ms, n = 11 and 10). However, there was no persistent current. Cold exposure reduced peak current and prolonged recovery from inactivation in wild-type and mutated channels. Amitriptyline only slightly corrected the steady-state inactivation shift of the mutated channel, which is consistent with the lack of clinical benefit. CONCLUSIONS The novel p.L1612P Nav1.7 mutation expands the PEPD spectrum with a unique combination of clinical symptoms and electrophysiological properties. Symptoms are partially responsive to temperature but not to drug therapy. In vitro trials of sodium channel blockers or temperature dependence might help predict treatment efficacy in PEPD.
Resumo:
PURPOSE: The worldwide prevalence of human papillomavirus (HPV) infection is estimated at 9-13 %. Persistent infection can lead to the development of malignant and nonmalignant diseases. Low-risk HPV types are mostly associated with benign lesions such as anogenital warts. In the present systematic review, we examined the impact of smoking on HPV infection and the development of anogenital warts, respectively. METHODS: A systematic literature search was performed using MEDLINE database for peer-reviewed articles published from January 01, 1985 to November 30, 2013. Pooled rates of HPV prevalence were compared using the χ (2) test. RESULTS: In both genders, smoking is associated with higher incidence and prevalence rates for HPV infection, whereas the latter responds to a dose-effect relationship. The overall HPV prevalence for smoking patients was 48.2 versus 37. 5 % for nonsmoking patients (p < 0.001) (odds ratio (OR) = 1.5, 95 % confidence interval (CI) 1.4-1.7). Smoking does also increase persistence rates for high-risk HPV infection, while this correlation is debatable for low-risk HPV. The incidence and recurrence rates of anogenital warts are significantly increased in smokers. CONCLUSIONS: Most current data demonstrate an association between smoking, increased anogenital HPV infection, and development of anogenital warts. These data add to the long list of reasons for making smoking cessation a keystone of patient health.
Resumo:
The impact of imatinib dose on response rates and survival in older patients with chronic myeloid leukemia in chronic phase has not been studied well. We analyzed data from the German CML-Study IV, a randomized five-arm treatment optimization study in newly diagnosed BCR-ABL-positive chronic myeloid leukemia in chronic phase. Patients randomized to imatinib 400 mg/day (IM400) or imatinib 800 mg/day (IM800) and stratified according to age (≥65 years vs. <65 years) were compared regarding dose, response, adverse events, rates of progression, and survival. The full 800 mg dose was given after a 6-week run-in period with imatinib 400 mg/day. The dose could then be reduced according to tolerability. A total of 828 patients were randomized to IM400 or IM800. Seven hundred eighty-four patients were evaluable (IM400, 382; IM800, 402). One hundred ten patients (29 %) on IM400 and 83 (21 %) on IM800 were ≥65 years. The median dose per day was lower for patients ≥65 years on IM800, with the highest median dose in the first year (466 mg/day for patients ≥65 years vs. 630 mg/day for patients <65 years). Older patients on IM800 achieved major molecular remission and deep molecular remission as fast as younger patients, in contrast to standard dose imatinib with which older patients achieved remissions much later than younger patients. Grades 3 and 4 adverse events were similar in both age groups. Five-year relative survival for older patients was comparable to that of younger patients. We suggest that the optimal dose for older patients is higher than 400 mg/day. ClinicalTrials.gov identifier: NCT00055874
Resumo:
Particulate matter (PM) pollution is a leading cause of premature death, particularly in those with pre-existing lung disease. A causative link between particle properties and adverse health effects remains unestablished mainly due to complex and variable physico-chemical PM parameters. Controlled laboratory experiments are required. Generating atmospherically realistic Aerosols and performing cell-exposure studies at relevant particle-doses are challenging. Here we examine gasoline-exhaust particle toxicity from a Euro-5 passenger car in a uniquely realistic exposure scenario, combining a smog chamber simulating atmospheric ageing, an aerosol enrichment System varying particle number concentration independent of particle chemistry, and an aerosol Deposition chamber physiologically delivering particles on air-liquid interface (ALI) cultures reproducing normal and susceptible health status. Gasoline-exhaust is an important PM source with largely unknown health effects. We investigated acute responses of fully-differentiated normal, distressed (antibiotics treated) normal, and cystic fibrosis human bronchial epithelia (HBE), and a proliferating, single-cell type bronchial epithelial cell-line (BEAS-2B). We show that a single, short-term exposure to realistic doses of atmospherically-aged gasoline-exhaust particles impairs epithelial key-defence mechanisms, rendering it more vulnerable to subsequent hazards. We establish dose-response curves at realistic particle-concentration levels. Significant differences between cell models suggest the use of fully differentiated HBE is most appropriate in future toxicity studies.
Resumo:
AIMS γ-Hydroxybutyrate (GHB) is used as a treatment for narcolepsy and alcohol withdrawal and as recreational substance. Nevertheless, there are limited data on the pharmacokinetics and pharmacokinetic-pharmacodynamic relationship of GHB in humans. We characterized the pharmacokinetic profile and exposure-psychotropic effect relationship of GHB in humans. METHODS Two oral doses of GHB (25 and 35 mg/kg) were administered to 32 healthy male subjects (16 for each dose) using a randomized, placebo-controlled, cross-over design. RESULTS Maximal concentrations of GHB were (geometric mean and 95%CI): 218 (176-270) nmol/ml and 453 (374-549) nmol/ml for the 25 and 35 mg/kg GHB doses, respectively. The elimination half-lives (mean ± SD) were 36 ± 9 and 39 ± 7 min and the AUC∞ values (geometric mean and 95%CI) were 15,747 (12,854-19,290) and 40,113 (33,093-48,622) nmol∙min/ml for the 20 and 35 mg/kg GHB doses, respectively. Thus, plasma GHB exposure (AUC0-∞ ) rose disproportionally (+40%) with the higher dose. γ-Hydroxybutyrate produced mixed stimulant-sedative effects, with a dose-dependent increase in sedation and dizziness. It did not alter heart rate or blood pressure. A close relationship between plasma GHB exposure and its psychotropic effects was found, with higher GHB concentrations associated with higher subjective stimulation, sedation, and dizziness. No clockwise hysteresis was observed in the GHB concentration effect plot over time (i.e., no acute pharmacological tolerance). CONCLUSION Evidence was found of a non-linear dose-exposure relationship (i.e., no dose proportionality) at moderate doses of GHB. The effects of GHB on consciousness were closely linked to its plasma exposure and exhibited no acute tolerance. This article is protected by copyright. All rights reserved.
Resumo:
BACKGROUND & AIMS Vascular hyporeactivity to vasoconstrictors contributes to splanchnic arterial vasodilatation and hemodynamic dysregulation in portal hypertension. Neuropeptide Y (NPY), a sympathetic cotransmitter, has been shown to improve adrenergic vascular contractility in portal hypertensive rats and markedly attenuate hyperdynamic circulation. To further characterize the NPY-effects in portal hypertension, we investigated its role for non-receptor-mediated vasoconstriction in the superior mesenteric artery (SMA) of portal vein ligated (PVL) and sham-operated rats. METHODS Ex vivo SMA perfusion of PVL and sham rats was used to analyse the effects of NPY on pressure response to non-receptor-mediated vasoconstriction. Dose-response curves to KCl (30-300 mM) were used to bypass G protein-coupled receptor mechanisms. Potential involvement of the cyclooxygenase-pathway was tested by non-selective cyclooxygenase-inhibition using indomethacin. RESULTS KCl-induced vascular contractility but not vascular sensitivity was significantly attenuated in PVL rats as compared with sham rats. Administration of NPY resulted in an augmentation of KCl-evoked vascular sensitivity being not different between study groups. However, KCl-induced vascular contractility was markedly more enhanced in PVL rats, thus, vascular response was no more significantly different between PVL and sham rats after addition of NPY. Administration of indomethacin abolished the NPY-induced enhancement of vasoconstriction. CONCLUSIONS Receptor-independent vascular contractility is impaired in mesenteric arteries in portal hypertension. NPY improves non-receptor mediated mesenteric vasoconstriction more effective in portal hypertension than in healthy conditions correcting splanchnic vascular hyporesponsiveness. This beneficial vasoactive action of NPY adds to its well known more pronounced effects on adrenergic vasoconstriction in portal hypertension making it a promising therapeutic agent in portal hypertension.
Resumo:
Systematic consideration of scientific support is a critical element in developing and, ultimately, using adverse outcome pathways (AOPs) for various regulatory applications. Though weight of evidence (WoE) analysis has been proposed as a basis for assessment of the maturity and level of confidence in an AOP, methodologies and tools are still being formalized. The Organization for Economic Co-operation and Development (OECD) Users' Handbook Supplement to the Guidance Document for Developing and Assessing AOPs (OECD 2014a; hereafter referred to as the OECD AOP Handbook) provides tailored Bradford-Hill (BH) considerations for systematic assessment of confidence in a given AOP. These considerations include (1) biological plausibility and (2) empirical support (dose-response, temporality, and incidence) for Key Event Relationships (KERs), and (3) essentiality of key events (KEs). Here, we test the application of these tailored BH considerations and the guidance outlined in the OECD AOP Handbook using a number of case examples to increase experience in more transparently documenting rationales for assigned levels of confidence to KEs and KERs, and to promote consistency in evaluation within and across AOPs. The major lessons learned from experience are documented, and taken together with the case examples, should contribute to better common understanding of the nature and form of documentation required to increase confidence in the application of AOPs for specific uses. Based on the tailored BH considerations and defining questions, a prototype quantitative model for assessing the WoE of an AOP using tools of multi-criteria decision analysis (MCDA) is described. The applicability of the approach is also demonstrated using the case example aromatase inhibition leading to reproductive dysfunction in fish. Following the acquisition of additional experience in the development and assessment of AOPs, further refinement of parameterization of the model through expert elicitation is recommended. Overall, the application of quantitative WoE approaches hold promise to enhance the rigor, transparency and reproducibility for AOP WoE determinations and may play an important role in delineating areas where research would have the greatest impact on improving the overall confidence in the AOP.