865 resultados para Discrete-time systems


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Engineering education in the United Kingdom is at the point of embarking upon an interesting journey into uncharted waters. At no point in the past have there been so many drivers for change and so many opportunities for the development of engineering pedagogy. This paper will look at how Engineering Education Research (EER) has developed within the UK and what differentiates it from the many small scale practitioner interventions, perhaps without a clear research question or with little evaluation, which are presented at numerous staff development sessions, workshops and conferences. From this position some examples of current projects will be described, outcomes of funding opportunities will be summarised and the benefits of collaboration with other disciplines illustrated. In this study, I will account for how the design of task structure according to variation theory, as well as the probe-ware technology, make the laws of force and motion visible and learnable and, especially, in the lab studied make Newton's third law visible and learnable. I will also, as a comparison, include data from a mechanics lab that use the same probe-ware technology and deal with the same topics in mechanics, but uses a differently designed task structure. I will argue that the lower achievements on the FMCE-test in this latter case can be attributed to these differences in task structure in the lab instructions. According to my analysis, the necessary pattern of variation is not included in the design. I will also present a microanalysis of 15 hours collected from engineering students' activities in a lab about impulse and collisions based on video recordings of student's activities in a lab about impulse and collisions. The important object of learning in this lab is the development of an understanding of Newton's third law. The approach analysing students interaction using video data is inspired by ethnomethodology and conversation analysis, i.e. I will focus on students practical, contingent and embodied inquiry in the setting of the lab. I argue that my result corroborates variation theory and show this theory can be used as a 'tool' for designing labs as well as for analysing labs and lab instructions. Thus my results have implications outside the domain of this study and have implications for understanding critical features for student learning in labs. Engineering higher education is well used to change. As technology develops the abilities expected by employers of graduates expand, yet our understanding of how to make informed decisions about learning and teaching strategies does not without a conscious effort to do so. With the numerous demands of academic life, we often fail to acknowledge our incomplete understanding of how our students learn within our discipline. The journey facing engineering education in the UK is being driven by two classes of driver. Firstly there are those which we have been working to expand our understanding of, such as retention and employability, and secondly the new challenges such as substantial changes to funding systems allied with an increase in student expectations. Only through continued research can priorities be identified, addressed and a coherent and strong voice for informed change be heard within the wider engineering education community. This new position makes it even more important that through EER we acquire the knowledge and understanding needed to make informed decisions regarding approaches to teaching, curriculum design and measures to promote effective student learning. This then raises the question 'how does EER function within a diverse academic community?' Within an existing community of academics interested in taking meaningful steps towards understanding the ongoing challenges of engineering education a Special Interest Group (SIG) has formed in the UK. The formation of this group has itself been part of the rapidly changing environment through its facilitation by the Higher Education Academy's Engineering Subject Centre, an entity which through the Academy's current restructuring will no longer exist as a discrete Centre dedicated to supporting engineering academics. The aims of this group, the activities it is currently undertaking and how it expects to network and collaborate with the global EER community will be reported in this paper. This will include explanation of how the group has identified barriers to the progress of EER and how it is seeking, through a series of activities, to facilitate recognition and growth of EER both within the UK and with our valued international colleagues.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This research aims at a study of the hybrid flow shop problem which has parallel batch-processing machines in one stage and discrete-processing machines in other stages to process jobs of arbitrary sizes. The objective is to minimize the makespan for a set of jobs. The problem is denoted as: FF: batch1,sj:Cmax. The problem is formulated as a mixed-integer linear program. The commercial solver, AMPL/CPLEX, is used to solve problem instances to their optimality. Experimental results show that AMPL/CPLEX requires considerable time to find the optimal solution for even a small size problem, i.e., a 6-job instance requires 2 hours in average. A bottleneck-first-decomposition heuristic (BFD) is proposed in this study to overcome the computational (time) problem encountered while using the commercial solver. The proposed BFD heuristic is inspired by the shifting bottleneck heuristic. It decomposes the entire problem into three sub-problems, and schedules the sub-problems one by one. The proposed BFD heuristic consists of four major steps: formulating sub-problems, prioritizing sub-problems, solving sub-problems and re-scheduling. For solving the sub-problems, two heuristic algorithms are proposed; one for scheduling a hybrid flow shop with discrete processing machines, and the other for scheduling parallel batching machines (single stage). Both consider job arrival and delivery times. An experiment design is conducted to evaluate the effectiveness of the proposed BFD, which is further evaluated against a set of common heuristics including a randomized greedy heuristic and five dispatching rules. The results show that the proposed BFD heuristic outperforms all these algorithms. To evaluate the quality of the heuristic solution, a procedure is developed to calculate a lower bound of makespan for the problem under study. The lower bound obtained is tighter than other bounds developed for related problems in literature. A meta-search approach based on the Genetic Algorithm concept is developed to evaluate the significance of further improving the solution obtained from the proposed BFD heuristic. The experiment indicates that it reduces the makespan by 1.93 % in average within a negligible time when problem size is less than 50 jobs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Road pricing has emerged as an effective means of managing road traffic demand while simultaneously raising additional revenues to transportation agencies. Research on the factors that govern travel decisions has shown that user preferences may be a function of the demographic characteristics of the individuals and the perceived trip attributes. However, it is not clear what are the actual trip attributes considered in the travel decision- making process, how these attributes are perceived by travelers, and how the set of trip attributes change as a function of the time of the day or from day to day. In this study, operational Intelligent Transportation Systems (ITS) archives are mined and the aggregated preferences for a priced system are extracted at a fine time aggregation level for an extended number of days. The resulting information is related to corresponding time-varying trip attributes such as travel time, travel time reliability, charged toll, and other parameters. The time-varying user preferences and trip attributes are linked together by means of a binary choice model (Logit) with a linear utility function on trip attributes. The trip attributes weights in the utility function are then dynamically estimated for each time of day by means of an adaptive, limited-memory discrete Kalman filter (ALMF). The relationship between traveler choices and travel time is assessed using different rules to capture the logic that best represents the traveler perception and the effect of the real-time information on the observed preferences. The impact of travel time reliability on traveler choices is investigated considering its multiple definitions. It can be concluded based on the results that using the ALMF algorithm allows a robust estimation of time-varying weights in the utility function at fine time aggregation levels. The high correlations among the trip attributes severely constrain the simultaneous estimation of their weights in the utility function. Despite the data limitations, it is found that, the ALMF algorithm can provide stable estimates of the choice parameters for some periods of the day. Finally, it is found that the daily variation of the user sensitivities for different periods of the day resembles a well-defined normal distribution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Over the past few decades, we have been enjoying tremendous benefits thanks to the revolutionary advancement of computing systems, driven mainly by the remarkable semiconductor technology scaling and the increasingly complicated processor architecture. However, the exponentially increased transistor density has directly led to exponentially increased power consumption and dramatically elevated system temperature, which not only adversely impacts the system's cost, performance and reliability, but also increases the leakage and thus the overall power consumption. Today, the power and thermal issues have posed enormous challenges and threaten to slow down the continuous evolvement of computer technology. Effective power/thermal-aware design techniques are urgently demanded, at all design abstraction levels, from the circuit-level, the logic-level, to the architectural-level and the system-level. ^ In this dissertation, we present our research efforts to employ real-time scheduling techniques to solve the resource-constrained power/thermal-aware, design-optimization problems. In our research, we developed a set of simple yet accurate system-level models to capture the processor's thermal dynamic as well as the interdependency of leakage power consumption, temperature, and supply voltage. Based on these models, we investigated the fundamental principles in power/thermal-aware scheduling, and developed real-time scheduling techniques targeting at a variety of design objectives, including peak temperature minimization, overall energy reduction, and performance maximization. ^ The novelty of this work is that we integrate the cutting-edge research on power and thermal at the circuit and architectural-level into a set of accurate yet simplified system-level models, and are able to conduct system-level analysis and design based on these models. The theoretical study in this work serves as a solid foundation for the guidance of the power/thermal-aware scheduling algorithms development in practical computing systems.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The future power grid will effectively utilize renewable energy resources and distributed generation to respond to energy demand while incorporating information technology and communication infrastructure for their optimum operation. This dissertation contributes to the development of real-time techniques, for wide-area monitoring and secure real-time control and operation of hybrid power systems. ^ To handle the increased level of real-time data exchange, this dissertation develops a supervisory control and data acquisition (SCADA) system that is equipped with a state estimation scheme from the real-time data. This system is verified on a specially developed laboratory-based test bed facility, as a hardware and software platform, to emulate the actual scenarios of a real hybrid power system with the highest level of similarities and capabilities to practical utility systems. It includes phasor measurements at hundreds of measurement points on the system. These measurements were obtained from especially developed laboratory based Phasor Measurement Unit (PMU) that is utilized in addition to existing commercially based PMU’s. The developed PMU was used in conjunction with the interconnected system along with the commercial PMU’s. The tested studies included a new technique for detecting the partially islanded micro grids in addition to several real-time techniques for synchronization and parameter identifications of hybrid systems. ^ Moreover, due to numerous integration of renewable energy resources through DC microgrids, this dissertation performs several practical cases for improvement of interoperability of such systems. Moreover, increased number of small and dispersed generating stations and their need to connect fast and properly into the AC grids, urged this work to explore the challenges that arise in synchronization of generators to the grid and through introduction of a Dynamic Brake system to improve the process of connecting distributed generators to the power grid.^ Real time operation and control requires data communication security. A research effort in this dissertation was developed based on Trusted Sensing Base (TSB) process for data communication security. The innovative TSB approach improves the security aspect of the power grid as a cyber-physical system. It is based on available GPS synchronization technology and provides protection against confidentiality attacks in critical power system infrastructures. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a vision that allows the combined use of model-driven engineering, run-time monitoring, and animation for the development and analysis of components in real-time embedded systems. Key building block in the tool environment supporting this vision is a highly-customizable code generation process. Customization is performed via a configuration specification which describes the ways in which input is provided to the component, the ways in which run-time execution information can be observed, and how these observations drive animation tools. The environment is envisioned to be suitable for different activities ranging from quality assurance to supporting certification, teaching, and outreach and will be built exclusively with open source tools to increase impact. A preliminary prototype implementation is described.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As the development of a viable quantum computer nears, existing widely used public-key cryptosystems, such as RSA, will no longer be secure. Thus, significant effort is being invested into post-quantum cryptography (PQC). Lattice-based cryptography (LBC) is one such promising area of PQC, which offers versatile, efficient, and high performance security services. However, the vulnerabilities of these implementations against side-channel attacks (SCA) remain significantly understudied. Most, if not all, lattice-based cryptosystems require noise samples generated from a discrete Gaussian distribution, and a successful timing analysis attack can render the whole cryptosystem broken, making the discrete Gaussian sampler the most vulnerable module to SCA. This research proposes countermeasures against timing information leakage with FPGA-based designs of the CDT-based discrete Gaussian samplers with constant response time, targeting encryption and signature scheme parameters. The proposed designs are compared against the state-of-the-art and are shown to significantly outperform existing implementations. For encryption, the proposed sampler is 9x faster in comparison to the only other existing time-independent CDT sampler design. For signatures, the first time-independent CDT sampler in hardware is proposed. 

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work presents a computational, called MOMENTS, code developed to be used in process control to determine a characteristic transfer function to industrial units when radiotracer techniques were been applied to study the unit´s performance. The methodology is based on the measuring the residence time distribution function (RTD) and calculate the first and second temporal moments of the tracer data obtained by two scintillators detectors NaI positioned to register a complete tracer movement inside the unit. Non linear regression technique has been used to fit various mathematical models and a statistical test was used to select the best result to the transfer function. Using the code MOMENTS, twelve different models can be used to fit a curve and calculate technical parameters to the unit.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Power system engineers face a double challenge: to operate electric power systems within narrow stability and security margins, and to maintain high reliability. There is an acute need to better understand the dynamic nature of power systems in order to be prepared for critical situations as they arise. Innovative measurement tools, such as phasor measurement units, can capture not only the slow variation of the voltages and currents but also the underlying oscillations in a power system. Such dynamic data accessibility provides us a strong motivation and a useful tool to explore dynamic-data driven applications in power systems. To fulfill this goal, this dissertation focuses on the following three areas: Developing accurate dynamic load models and updating variable parameters based on the measurement data, applying advanced nonlinear filtering concepts and technologies to real-time identification of power system models, and addressing computational issues by implementing the balanced truncation method. By obtaining more realistic system models, together with timely updated parameters and stochastic influence consideration, we can have an accurate portrait of the ongoing phenomena in an electrical power system. Hence we can further improve state estimation, stability analysis and real-time operation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nitrous oxide (N2O) emissions from soil are often measured using the manual static chamber method. Manual gas sampling is labour intensive, so a minimal sampling frequency that maintains the accuracy of measurements would be desirable. However, the high temporal (diurnal, daily and seasonal) variabilities of N2O emissions can compromise the accuracy of measurements if not addressed adequately when formulating a sampling schedule. Assessments of sampling strategies to date have focussed on relatively low emission systems with high episodicity, where a small number of the highest emission peaks can be critically important in the measurement of whole season cumulative emissions. Using year-long, automated sub-daily N2O measurements from three fertilised sugarcane fields, we undertook an evaluation of the optimum gas sampling strategies in high emission systems with relatively long emission episodes. The results indicated that sampling in the morning between 09:00–12:00, when soil temperature was generally close to the daily average, best approximated the daily mean N2O emission within 4–7% of the ‘actual’ daily emissions measured by automated sampling. Weekly sampling with biweekly sampling for one week after >20 mm of rainfall was the recommended sampling regime. It resulted in no extreme (>20%) deviations from the ‘actuals’, had a high probability of estimating the annual cumulative emissions within 10% precision, with practicable sampling numbers in comparison to other sampling regimes. This provides robust and useful guidance for manual gas sampling in sugarcane cropping systems, although further adjustments by the operators in terms of expected measurement accuracy and resource availability are encouraged. By implementing these sampling strategies together, labour inputs and errors in measured cumulative N2O emissions can be minimised. Further research is needed to quantify the spatial variability of N2O emissions within sugarcane cropping and to develop techniques for effectively addressing both spatial and temporal variabilities simultaneously.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study is about the comparison of simulation techniques between Discrete Event Simulation (DES) and Agent Based Simulation (ABS). DES is one of the best-known types of simulation techniques in Operational Research. Recently, there has been an emergence of another technique, namely ABS. One of the qualities of ABS is that it helps to gain a better understanding of complex systems that involve the interaction of people with their environment as it allows to model concepts like autonomy and pro-activeness which are important attributes to consider. Although there is a lot of literature relating to DES and ABS, we have found none that focuses on exploring the capability of both in tackling the human behaviour issues which relates to queuing time and customer satisfaction in the retail sector. Therefore, the objective of this study is to identify empirically the differences between these simulation techniques by stimulating the potential economic benefits of introducing new policies in a department store. To apply the new strategy, the behaviour of consumers in a retail store will be modelled using the DES and ABS approach and the results will be compared. We aim to understand which simulation technique is better suited to human behaviour modelling by investigating the capability of both techniques in predicting the best solution for an organisation in using management practices. Our main concern is to maximise customer satisfaction, for example by minimising their waiting times for the different services provided.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a new tuning methodology of the main controller of an internal model control structure for n×n stable multivariable processes with multiple time delays based on the centralized inverted decoupling structure. Independently of the system size, very simple general expressions for the controller elements are obtained. The realizability conditions are provided and the specification of the closed-loop requirements is explained. A diagonal filter is added to the proposed control structure in order to improve the disturbance rejection without modifying the nominal set-point response. The effectiveness of the method is illustrated through different simulation examples in comparison with other works.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

New generation embedded systems demand high performance, efficiency and flexibility. Reconfigurable hardware can provide all these features. However the costly reconfiguration process and the lack of management support have prevented a broader use of these resources. To solve these issues we have developed a scheduler that deals with task-graphs at run-time, steering its execution in the reconfigurable resources while carrying out both prefetch and replacement techniques that cooperate to hide most of the reconfiguration delays. In our scheduling environment task-graphs are analyzed at design-time to extract useful information. This information is used at run-time to obtain near-optimal schedules, escaping from local-optimum decisions, while only carrying out simple computations. Moreover, we have developed a hardware implementation of the scheduler that applies all the optimization techniques while introducing a delay of only a few clock cycles. In the experiments our scheduler clearly outperforms conventional run-time schedulers based on As-Soon-As-Possible techniques. In addition, our replacement policy, specially designed for reconfigurable systems, achieves almost optimal results both regarding reuse and performance.