851 resultados para Discrete-time singular systems
Resumo:
Road pricing has emerged as an effective means of managing road traffic demand while simultaneously raising additional revenues to transportation agencies. Research on the factors that govern travel decisions has shown that user preferences may be a function of the demographic characteristics of the individuals and the perceived trip attributes. However, it is not clear what are the actual trip attributes considered in the travel decision- making process, how these attributes are perceived by travelers, and how the set of trip attributes change as a function of the time of the day or from day to day. In this study, operational Intelligent Transportation Systems (ITS) archives are mined and the aggregated preferences for a priced system are extracted at a fine time aggregation level for an extended number of days. The resulting information is related to corresponding time-varying trip attributes such as travel time, travel time reliability, charged toll, and other parameters. The time-varying user preferences and trip attributes are linked together by means of a binary choice model (Logit) with a linear utility function on trip attributes. The trip attributes weights in the utility function are then dynamically estimated for each time of day by means of an adaptive, limited-memory discrete Kalman filter (ALMF). The relationship between traveler choices and travel time is assessed using different rules to capture the logic that best represents the traveler perception and the effect of the real-time information on the observed preferences. The impact of travel time reliability on traveler choices is investigated considering its multiple definitions. It can be concluded based on the results that using the ALMF algorithm allows a robust estimation of time-varying weights in the utility function at fine time aggregation levels. The high correlations among the trip attributes severely constrain the simultaneous estimation of their weights in the utility function. Despite the data limitations, it is found that, the ALMF algorithm can provide stable estimates of the choice parameters for some periods of the day. Finally, it is found that the daily variation of the user sensitivities for different periods of the day resembles a well-defined normal distribution.
Resumo:
The future power grid will effectively utilize renewable energy resources and distributed generation to respond to energy demand while incorporating information technology and communication infrastructure for their optimum operation. This dissertation contributes to the development of real-time techniques, for wide-area monitoring and secure real-time control and operation of hybrid power systems. ^ To handle the increased level of real-time data exchange, this dissertation develops a supervisory control and data acquisition (SCADA) system that is equipped with a state estimation scheme from the real-time data. This system is verified on a specially developed laboratory-based test bed facility, as a hardware and software platform, to emulate the actual scenarios of a real hybrid power system with the highest level of similarities and capabilities to practical utility systems. It includes phasor measurements at hundreds of measurement points on the system. These measurements were obtained from especially developed laboratory based Phasor Measurement Unit (PMU) that is utilized in addition to existing commercially based PMU’s. The developed PMU was used in conjunction with the interconnected system along with the commercial PMU’s. The tested studies included a new technique for detecting the partially islanded micro grids in addition to several real-time techniques for synchronization and parameter identifications of hybrid systems. ^ Moreover, due to numerous integration of renewable energy resources through DC microgrids, this dissertation performs several practical cases for improvement of interoperability of such systems. Moreover, increased number of small and dispersed generating stations and their need to connect fast and properly into the AC grids, urged this work to explore the challenges that arise in synchronization of generators to the grid and through introduction of a Dynamic Brake system to improve the process of connecting distributed generators to the power grid.^ Real time operation and control requires data communication security. A research effort in this dissertation was developed based on Trusted Sensing Base (TSB) process for data communication security. The innovative TSB approach improves the security aspect of the power grid as a cyber-physical system. It is based on available GPS synchronization technology and provides protection against confidentiality attacks in critical power system infrastructures. ^
Resumo:
As the development of a viable quantum computer nears, existing widely used public-key cryptosystems, such as RSA, will no longer be secure. Thus, significant effort is being invested into post-quantum cryptography (PQC). Lattice-based cryptography (LBC) is one such promising area of PQC, which offers versatile, efficient, and high performance security services. However, the vulnerabilities of these implementations against side-channel attacks (SCA) remain significantly understudied. Most, if not all, lattice-based cryptosystems require noise samples generated from a discrete Gaussian distribution, and a successful timing analysis attack can render the whole cryptosystem broken, making the discrete Gaussian sampler the most vulnerable module to SCA. This research proposes countermeasures against timing information leakage with FPGA-based designs of the CDT-based discrete Gaussian samplers with constant response time, targeting encryption and signature scheme parameters. The proposed designs are compared against the state-of-the-art and are shown to significantly outperform existing implementations. For encryption, the proposed sampler is 9x faster in comparison to the only other existing time-independent CDT sampler design. For signatures, the first time-independent CDT sampler in hardware is proposed.
Resumo:
This work presents a computational, called MOMENTS, code developed to be used in process control to determine a characteristic transfer function to industrial units when radiotracer techniques were been applied to study the unit´s performance. The methodology is based on the measuring the residence time distribution function (RTD) and calculate the first and second temporal moments of the tracer data obtained by two scintillators detectors NaI positioned to register a complete tracer movement inside the unit. Non linear regression technique has been used to fit various mathematical models and a statistical test was used to select the best result to the transfer function. Using the code MOMENTS, twelve different models can be used to fit a curve and calculate technical parameters to the unit.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Power system engineers face a double challenge: to operate electric power systems within narrow stability and security margins, and to maintain high reliability. There is an acute need to better understand the dynamic nature of power systems in order to be prepared for critical situations as they arise. Innovative measurement tools, such as phasor measurement units, can capture not only the slow variation of the voltages and currents but also the underlying oscillations in a power system. Such dynamic data accessibility provides us a strong motivation and a useful tool to explore dynamic-data driven applications in power systems. To fulfill this goal, this dissertation focuses on the following three areas: Developing accurate dynamic load models and updating variable parameters based on the measurement data, applying advanced nonlinear filtering concepts and technologies to real-time identification of power system models, and addressing computational issues by implementing the balanced truncation method. By obtaining more realistic system models, together with timely updated parameters and stochastic influence consideration, we can have an accurate portrait of the ongoing phenomena in an electrical power system. Hence we can further improve state estimation, stability analysis and real-time operation.
Resumo:
Nitrous oxide (N2O) emissions from soil are often measured using the manual static chamber method. Manual gas sampling is labour intensive, so a minimal sampling frequency that maintains the accuracy of measurements would be desirable. However, the high temporal (diurnal, daily and seasonal) variabilities of N2O emissions can compromise the accuracy of measurements if not addressed adequately when formulating a sampling schedule. Assessments of sampling strategies to date have focussed on relatively low emission systems with high episodicity, where a small number of the highest emission peaks can be critically important in the measurement of whole season cumulative emissions. Using year-long, automated sub-daily N2O measurements from three fertilised sugarcane fields, we undertook an evaluation of the optimum gas sampling strategies in high emission systems with relatively long emission episodes. The results indicated that sampling in the morning between 09:00–12:00, when soil temperature was generally close to the daily average, best approximated the daily mean N2O emission within 4–7% of the ‘actual’ daily emissions measured by automated sampling. Weekly sampling with biweekly sampling for one week after >20 mm of rainfall was the recommended sampling regime. It resulted in no extreme (>20%) deviations from the ‘actuals’, had a high probability of estimating the annual cumulative emissions within 10% precision, with practicable sampling numbers in comparison to other sampling regimes. This provides robust and useful guidance for manual gas sampling in sugarcane cropping systems, although further adjustments by the operators in terms of expected measurement accuracy and resource availability are encouraged. By implementing these sampling strategies together, labour inputs and errors in measured cumulative N2O emissions can be minimised. Further research is needed to quantify the spatial variability of N2O emissions within sugarcane cropping and to develop techniques for effectively addressing both spatial and temporal variabilities simultaneously.
Resumo:
This study is about the comparison of simulation techniques between Discrete Event Simulation (DES) and Agent Based Simulation (ABS). DES is one of the best-known types of simulation techniques in Operational Research. Recently, there has been an emergence of another technique, namely ABS. One of the qualities of ABS is that it helps to gain a better understanding of complex systems that involve the interaction of people with their environment as it allows to model concepts like autonomy and pro-activeness which are important attributes to consider. Although there is a lot of literature relating to DES and ABS, we have found none that focuses on exploring the capability of both in tackling the human behaviour issues which relates to queuing time and customer satisfaction in the retail sector. Therefore, the objective of this study is to identify empirically the differences between these simulation techniques by stimulating the potential economic benefits of introducing new policies in a department store. To apply the new strategy, the behaviour of consumers in a retail store will be modelled using the DES and ABS approach and the results will be compared. We aim to understand which simulation technique is better suited to human behaviour modelling by investigating the capability of both techniques in predicting the best solution for an organisation in using management practices. Our main concern is to maximise customer satisfaction, for example by minimising their waiting times for the different services provided.
Resumo:
Wireless sensor networks (WSNs) are the key enablers of the internet of things (IoT) paradigm. Traditionally, sensor network research has been to be unlike the internet, motivated by power and device constraints. The IETF 6LoWPAN draft standard changes this, defining how IPv6 packets can be efficiently transmitted over IEEE 802.15.4 radio links. Due to this 6LoWPAN technology, low power, low cost micro- controllers can be connected to the internet forming what is known as the wireless embedded internet. Another IETF recommendation, CoAP allows these devices to communicate interactively over the internet. The integration of such tiny, ubiquitous electronic devices to the internet enables interesting real-time applications. This thesis work attempts to evaluate the performance of a stack consisting of CoAP and 6LoWPAN over the IEEE 802.15.4 radio link using the Contiki OS and Cooja simulator, along with the CoAP framework Californium (Cf). Ultimately, the implementation of this stack on real hardware is carried out using a raspberry pi as a border router with T-mote sky sensors as slip radios and CoAP servers relaying temperature and humidity data. The reliability of the stack was also demonstrated during scalability analysis conducted on the physical deployment. The interoperability is ensured by connecting the WSN to the global internet using different hardware platforms supported by Contiki and without the use of specialized gateways commonly found in non IP based networks. This work therefore developed and demonstrated a heterogeneous wireless sensor network stack, which is IP based and conducted performance analysis of the stack, both in terms of simulations and real hardware.
Resumo:
New generation embedded systems demand high performance, efficiency and flexibility. Reconfigurable hardware can provide all these features. However the costly reconfiguration process and the lack of management support have prevented a broader use of these resources. To solve these issues we have developed a scheduler that deals with task-graphs at run-time, steering its execution in the reconfigurable resources while carrying out both prefetch and replacement techniques that cooperate to hide most of the reconfiguration delays. In our scheduling environment task-graphs are analyzed at design-time to extract useful information. This information is used at run-time to obtain near-optimal schedules, escaping from local-optimum decisions, while only carrying out simple computations. Moreover, we have developed a hardware implementation of the scheduler that applies all the optimization techniques while introducing a delay of only a few clock cycles. In the experiments our scheduler clearly outperforms conventional run-time schedulers based on As-Soon-As-Possible techniques. In addition, our replacement policy, specially designed for reconfigurable systems, achieves almost optimal results both regarding reuse and performance.
Resumo:
Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems.
(1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control.
(2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.
Resumo:
When it comes to information sets in real life, often pieces of the whole set may not be available. This problem can find its origin in various reasons, describing therefore different patterns. In the literature, this problem is known as Missing Data. This issue can be fixed in various ways, from not taking into consideration incomplete observations, to guessing what those values originally were, or just ignoring the fact that some values are missing. The methods used to estimate missing data are called Imputation Methods. The work presented in this thesis has two main goals. The first one is to determine whether any kind of interactions exists between Missing Data, Imputation Methods and Supervised Classification algorithms, when they are applied together. For this first problem we consider a scenario in which the databases used are discrete, understanding discrete as that it is assumed that there is no relation between observations. These datasets underwent processes involving different combina- tions of the three components mentioned. The outcome showed that the missing data pattern strongly influences the outcome produced by a classifier. Also, in some of the cases, the complex imputation techniques investigated in the thesis were able to obtain better results than simple ones. The second goal of this work is to propose a new imputation strategy, but this time we constrain the specifications of the previous problem to a special kind of datasets, the multivariate Time Series. We designed new imputation techniques for this particular domain, and combined them with some of the contrasted strategies tested in the pre- vious chapter of this thesis. The time series also were subjected to processes involving missing data and imputation to finally propose an overall better imputation method. In the final chapter of this work, a real-world example is presented, describing a wa- ter quality prediction problem. The databases that characterized this problem had their own original latent values, which provides a real-world benchmark to test the algorithms developed in this thesis.
Resumo:
This paper describes three metaphors for time drawn from contemporary and historical literature on knowledge organization systems (KOS). It then links these metaphors to the evaluation of knowledge organization by describing the dominant paradigm in KOS evaluation to be judging whether a KOS is correct. We conclude by saying a foundational view of evaluating and theorizing about KOS must account for change and time in order for us to take a long view of improving knowledge organization and our understanding of KOS.
Resumo:
In the context of the International Society for Knowledge Organization, we often consider knowledge organization systems to comprise catalogues, thesauri, and bibliothecal classification schemes – schemes for library arrangement. In recent years we have added ontologies and folksonomies to our sphere of study. In all of these cases it seems we are concerned with improving access to information. We want a good system.And much of the literature from the late 19th into the late 20th century took that as their goal – to analyze the world of knowledge and the structures of representing it as its objects of study; again, with the ethos for creating a good system. In most cases this meant we had to be correct in our assertions about the universe of knowledge and the relationships that obtain between its constituent parts. As a result much of the literature of knowledge organization is prescriptive – instructing designers and professionals how to build or use the schemes correctly – that is to maximize redundant success in accessing information.In 2005, there was a turn in some of the knowledge organization literature. It has been called the descriptive turn. This is in relation to the otherwise prescriptive efforts of researchers in KO. And it is the descriptive turn that makes me think of context, languages, and cultures in knowledge organization–the theme of this year’s conference.Work in the descriptive turn questions the basic assumptions about what we want to do when we create, implement, maintain, and evaluate knowledge organization systems. Following on these assumptions researchers have examined a wider range of systems and question the motivations behind system design. Online websites that allow users to curate their own collections are one such addition, for example Pinterest (cf., Feinberg, 2011). However, researchers have also looked back at other lineages of organizing to compare forms and functions. For example, encyclopedias, catalogues raisonnés, archival description, and winter counts designed and used by Native Americans.In this case of online curated collections, Melanie Feinberg has started to examine the craft of curation, as she calls it. In this line of research purpose, voice, and rhetorical stance surface as design considerations. For example, in the case of the Pinterest, users are able and encouraged to create boards. The process of putting together these boards is an act of curation in contemporary terminology. It is describing this craft that comes from the descriptive turn in KO.In the second case, when researchers in the descriptive turn look back at older and varied examples of knowledge organization systems, we are looking for a full inventory of intent and inspiration for future design. Encyclopedias, catalogues raisonnés, archival description, and works of knowledge organization in other cultures provide a rich world for the descriptive turn. And researchers have availed themselves of this.