995 resultados para Discovery (Law)
Resumo:
Service discovery is vital in ubiquitous applications, where a large number of devices and software components collaborate unobtrusively and provide numerous services without user intervention. Existing service discovery schemes use a service matching process in order to offer services of interest to the users. Potentially, the context information of the users and surrounding environment can be used to improve the quality of service matching. To make use of context information in service matching, a service discovery technique needs to address certain challenges. Firstly, it is required that the context information shall have unambiguous representation. Secondly, the devices in the environment shall be able to disseminate high level and low level context information seamlessly in the different networks. And thirdly, dynamic nature of the context information be taken into account. We propose a C-IOB(Context-Information, Observation and Belief) based service discovery model which deals with the above challenges by processing the context information and by formulating the beliefs based on the observations. With these formulated beliefs the required services will be provided to the users. The method has been tested with a typical ubiquitous museum guide application over different cases. The simulation results are time efficient and quite encouraging.
Resumo:
Recent studies on the Portevin-Le Chatelier effect report an intriguing crossover phenomenon from low-dimensional chaotic to an infinite-dimensional scale-invariant power law regime in experiments on CuAl single crystals and AlMg polycrystals, as function of strain rate. We devise fully dynamical model which reproduces these results. At low and medium strain rates, the model is chaotic with the structure of the attractor resembling the reconstructed experimental attractor. At high strain rates, power law statistics for the magnitudes and durations of the stress drops emerge as in experiments and concomitantly, the largest Lyapunov exponent is zero.
Resumo:
An understanding of application I/O access patterns is useful in several situations. First, gaining insight into what applications are doing with their data at a semantic level helps in designing efficient storage systems. Second, it helps create benchmarks that mimic realistic application behavior closely. Third, it enables autonomic systems as the information obtained can be used to adapt the system in a closed loop.All these use cases require the ability to extract the application-level semantics of I/O operations. Methods such as modifying application code to associate I/O operations with semantic tags are intrusive. It is well known that network file system traces are an important source of information that can be obtained non-intrusively and analyzed either online or offline. These traces are a sequence of primitive file system operations and their parameters. Simple counting, statistical analysis or deterministic search techniques are inadequate for discovering application-level semantics in the general case, because of the inherent variation and noise in realistic traces.In this paper, we describe a trace analysis methodology based on Profile Hidden Markov Models. We show that the methodology has powerful discriminatory capabilities that enable it to recognize applications based on the patterns in the traces, and to mark out regions in a long trace that encapsulate sets of primitive operations that represent higher-level application actions. It is robust enough that it can work around discrepancies between training and target traces such as in length and interleaving with other operations. We demonstrate the feasibility of recognizing patterns based on a small sampling of the trace, enabling faster trace analysis. Preliminary experiments show that the method is capable of learning accurate profile models on live traces in an online setting. We present a detailed evaluation of this methodology in a UNIX environment using NFS traces of selected commonly used applications such as compilations as well as on industrial strength benchmarks such as TPC-C and Postmark, and discuss its capabilities and limitations in the context of the use cases mentioned above.
Resumo:
Segmental dynamic time warping (DTW) has been demonstrated to be a useful technique for finding acoustic similarity scores between segments of two speech utterances. Due to its high computational requirements, it had to be computed in an offline manner, limiting the applications of the technique. In this paper, we present results of parallelization of this task by distributing the workload in either a static or dynamic way on an 8-processor cluster and discuss the trade-offs among different distribution schemes. We show that online unsupervised pattern discovery using segmental DTW is plausible with as low as 8 processors. This brings the task within reach of today's general purpose multi-core servers. We also show results on a 32-processor system, and discuss factors affecting scalability of our methods.
Resumo:
In the design of °ight control system modeling uncertainties in the form of param-eter variations is one of the major problems. It is even more critical for high performance aircrafts,since such aircrafts are purposefully designed unstable to enhance their performance (especially ma-neuverability). Hence the °ight control system needs to be quite e®ective in both assuring accurate tracking of pilot commands, while simultaneously assuring overall stability of the aircraft. In addi-tion, the control system must also be su±ciently robust to cater for possible parameter variations and inaccuracies . The primary aim of this paper is to carry out a robustness study of a dynamic inversion based nonlinear control design for a high performance aircraft, which has been developed recently [1].
Resumo:
It is being realized that the traditional closed-door and market driven approaches for drug discovery may not be the best suited model for the diseases of the developing world such as tuberculosis and malaria, because most patients suffering from these diseases have poor paying capacity. To ensure that new drugs are created for patients suffering from these diseases, it is necessary to formulate an alternate paradigm of drug discovery process. The current model constrained by limitations for collaboration and for sharing of resources with confidentiality hampers the opportunities for bringing expertise from diverse fields. These limitations hinder the possibilities of lowering the cost of drug discovery. The Open Source Drug Discovery project initiated by Council of Scientific and Industrial Research, India has adopted an open source model to power wide participation across geographical borders. Open Source Drug Discovery emphasizes integrative science through collaboration, open-sharing, taking up multi-faceted approaches and accruing benefits from advances on different fronts of new drug discovery. Because the open source model is based on community participation, it has the potential to self-sustain continuous development by generating a storehouse of alternatives towards continued pursuit for new drug discovery. Since the inventions are community generated, the new chemical entities developed by Open Source Drug Discovery will be taken up for clinical trial in a non-exclusive manner by participation of multiple companies with majority funding from Open Source Drug Discovery. This will ensure availability of drugs through a lower cost community driven drug discovery process for diseases afflicting people with poor paying capacity. Hopefully what LINUX the World Wide Web have done for the information technology, Open Source Drug Discovery will do for drug discovery. (C) 2011 Elsevier Ltd. All rights reserved.