849 resultados para Diffusion mechanisms of strategy
Resumo:
The increasing demand for high capacity data storage requires decreasing the head-to-tape gap and reducing the track width. A problem very often encountered is the development of adhesive debris on the heads at low humidity and high temperatures that can lead to an increase of space between the head and media, and thus a decrease in the playback signal. The influence of stains on the playback signal of reading heads is studied using RAW (Read After Write) tests and their influence on the wear of the heads by using indentation technique. The playback signal has been found to vary and the errors to increase as stains form a patchy pattern and grow in size to form a continuous layer. The indentation technique shows that stains reduce the wear rate of the heads. In addition, the wear tends to be more pronounced at the leading edge of the head compared to the trailing one. Chemical analysis of the stains using ferrite samples in conjunction with MP (metal particulate) tapes shows that stains contain iron particles and polymeric binder transferred from the MP tape. The chemical anchors in the binder used to grip the iron particles now react with the ferrite surface to create strong chemical bonds. At high humidity, a thin layer of iron oxyhydroxide forms on the surface of the ferrite. This soft material increases the wear rate and so reduces the amount of stain present on the heads. The stability of the binder under high humidity and under high temperature as well as the chemical reactions that might occur on the ferrite poles of the heads influences the dynamic behaviour of stains. A model of stain formation taking into account the channels of binder degradation and evolution upon different environmental conditions is proposed.
Resumo:
This thesis examines the mechanism of wear occuring to the video head and their effect on signal reproduction. in particular it examines the wear occuring to manganese-zinc ferrite heads in sliding contact with iron oxide media. A literature survey is presented, which covers magnetic recording technologies, focussing on video recording. Existing work on wear of magnetic heads is also examined, and gaps in the theoretical account of wear mechanisms presented in the literature are identified. Pilot research was carrried out on the signal degradation and wear associated witha number of commercial video tapes, containing a range of head cleaning agents. From this research, the main body of the research was identified. A number of methods of wear measurement were examined for use in this project. Knoop diamond indentation was chosen because experimentation showed it to be capable of measuring wear occuring in situ. This technique was then used to examine the wear associated with different levels of A12O3 and Cr2O3 head cleaning agents. The results of the research indicated that, whilst wear of the video head increases linearly with increasing HCA content, signal degradation does not vary significantly. The most significant differences in wear and signal reproduction were observed between the two HCAs. The signal degradation of heads worn with tape samples containing A12O3 HCA was found to be lower than heads worn with tapes containing Cr2O3 HCA. The results also indicate that the wear to the head is an abrasive process characterised by ploughing of the ferrite surface and chipping of the edges of the head gap. Both phenomena appear to be caused by poor iron oxide and head cleaning particles, which create isolated asperities on the tape surface.
Resumo:
This project is targeted towards establishing the durability and mechanisms of wear involved in the use of 5.25 inch magnetic floppy diskettes with particular reference to the media manufactured by the Minnesota Mining and Manufacturing Company, 3M Center, St. Paul, Minnesota, USA. In the present work most stress has been laid on the presentation of the conclusions drawn from the results obtained using samples produced specifically for this project. These samples were produced on the pilot plant at 3MTM, St. Paul, USA and are identified by the code 58759-4 with sample numbers SR1 to SR4 each with different lubrication conditions. All of the categories have been produced with four different surface roughnesses by varying the degree of burnishing. It has been found that the mechanisms of wear are related to a fatigue process. Some surprises have been noted in respect of the value of burnishing compared to the observations made elsewhere. Good reasons for these observed differences have been noted, however, and it will be shown that these are merely superficial and not concerned with wear of any real type. The present work reports the effects of the changes in the media's lubrication status and its surface topography as well as presenting evidence for the suggested wear mechanisms.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
The literature on heat and mass transfer mechanisms in the convective drying of thick beds of solids has been critically reviewed. Related mathematical models of heat transfer are also considered. Experimental and theoretical studies were made of the temperature distribution within beds, and of drying rates, with various materials undergoing convective drying. The experimental work covered thick beds of hygroscopic and non-hygroscopic materials (glass beads of different diameters, polystyrene pellets, activated alumina and wood powder) at air temperatures of 54°C to 84°C. Tests were carried out in a laboratory drying apparatus comprising a wind tunnel through which the air, of controlled temperature and humidity, was passed over a sample suspended from a balance. Thermocouples were inserted at different depths within the sample bed. The temperature distribution profiles for both hygroscopic and non-hygroscopic beds exhibited a clear difference between the temperatures at the surface and bottom during the constant rate period. An effective method was introduced for predicting the critical moisture content. During the falling rate the profiles showed the existence of a receding evaporation plane; this divided the system into a hotter dry zone in the upper section and a wet zone near the bottom. A graphical procedure was established to predict accurately the position of the receding evaporation front at any time. A new mathematical model, based on the receding evaporation front phenomenon, was proposed to predict temperature distributions throughout a bed during drying. Good agreement was obtained when the model was validated by comparing its predictions with experimental data. The model was also able to predict the duration of each drying stage. In experiments using sample trays of different diameters, the drying rate was found to increase with a decrease in the effective length of the bed surface. During the constant rate period with trays of a small effective length, i.e. less than 0.08 m, an 'inversion' in temperature distribution occurred in the bed; the bottom temperature increased and became greater than that of the surface. Experimental measurements were verified in several ways to ensure this phenomenon was real. Theoretical explanations are given for both the effective length and temperature inversion phenomena.
Resumo:
A specially-designed vertical wind tunnel was used to freely suspend individual liquid drops of 5 mm initial diameter to investigate drop dynamics, terminal velocity and heat and mass transfer rates. Droplets of distilled, de-ionised water, n-propanol, iso-butanol, monoethanolamine and heptane were studied over a temperature range of 50oC to 82oC. The effects of substances that may provide drop surface rigidity (e.g. surface active agents, binders and polymers) on mass transfer rates were investigated by doping distilled de-ionised water drops with sodium di-octyl sulfo-succinate surfactant. Mass transfer rates decreased with reduced drop oscillation as a result of surfactant addition, confirming the importance of droplet surface instability. Rigid naphthalene spheres and drops which formed a skin were also studied; the results confirmed the reduced transfer rates in the absence of drop fluidity. Following consideration of fundamental drop dynamics in air and experimental results from this study, a novel dimensionless group, the Oteng-Attakora, (OT), number was included in the mass transfer equation to account for droplet surface behaviour and for prediction of heat and mass transfer rates from single drops which exhibit surface instability at Re>=500. The OT number and the modified mass transfer equation are respectively: OT=(ava2/d).de1.5(d/) Sh = 2 + 0.02OT0.15Re0.88Sc0.33 Under all conditions drop terminal velocity increased linearly with the square root of drop diameter and the drag coefficient was 1. The data were correlated with a modified equation by Finlay as follows: CD=0.237.((Re/P0.13)1.55(1/We.P0.13) The relevance of the new model to practical evaporative spray processes is discussed.
Resumo:
The literature relating to evaporation from single droplets of pure liquids, and to the drying of droplets containing solids and of droplet sprays has been reviewed. The heat and mass transfer rates for a single droplet suspended from a nozzle were studied within a 42mm I.D. horizontal wind tunnel designed to supply hot dry air, to simulate conditions encountered in a practical spray dryer. A novel rotating glass nozzle was developed to facilitate direct measurements of droplet weight and core temperature. This design minimised heat conduction through the nozzle. Revised correlations were obtained for heat and mass transfer coefficients, for evaporation from pure water droplets suspended from a rotating nozzle. Nu = 2.0 + 0.27 (l/B)°-18Re°-5Pr°-83 Sh = 2.0 + 0.575 ((T0-T.)/Tomfc) -o.o4Reo.5 ^0.33 Experimental drying studies were carried out on single droplets of different types of skin-forming materials, namely, custard, gelatin, skim milk and fructose at air temperatures ranging from 19°C to 198°C. Dried crusts were recovered and examined by Scanning Electron Microscopy. Skin-forming materials were classified into three types according to the mechanisms of skin formation. In the first type (typified by droplets of custard and starch) skin formed due to gelatinisation at high temperatures. Increasing the drying temperature resulted in increased crust resistance to mass transfer due to increased granule swelling and the crust resistance was completely transferred to a skin resistance at drying temperatures > 150°C. In the second type e.g. gelatin droplets the skin formed immediately drying had taken place at any drying temperature. At drying temperature > 60° C a more resistant skin was formed. In the third type (typified by droplets of skim milk and fructose) the skin appeared on the droplet surface at a certain stage of the drying process under any drying conditions. As the drying temperature was increased the resistance of the skin to mass transfer increased. The drying rate history of any material depended upon the nature of the skin formed which, in turn, depended upon the drying conditions. A mathematical model was proposed for the drying of the first type of skin-forming material. This was based on the assumption that, once all the granules gelatinised at the gelatinisation temperature, a skin appeared instantaneously on the droplet surface. The experimentally-observed times at which the skin appeared on the droplets surfaces were in excellent agreement with those predicted from the model. The work should assist in understanding the fundamentals of paniculate drying processes, particularly when skin-formation occurs and may be a crucial factor in volatiles retention.
Resumo:
A large number of compounds containing quinonoid or hindered phenol functions were examined for their roles as antifatigue agents. Among the evaluated quinones and phenols expected to have macroalkyl radical scavenging ability, BQ, αTOC, γTOC and GM showed relatively good performance for fatigue resistance (although their performance was slightly less effective than the commercial aromatic amine antioxidants, IPPD and 6PPD). The compounds which were shown to have higher reactivity with alkyl radicals (via calculated reactivity indices) showed better fatigue resistance. This fact supports the suggestion that strong alkyl radical scavengers should be also effective antifatigue agents. Evidence produced based on calculation of reactivity indices suggests that the quinones examined react with alkyl radicals on the meta position of the quinone rings producing phenoxyl radicals. The phenoxyl radicals are expected either to disproportionate, to recombine with a further alkyl radical, or to abstract a hydrogen from another alkyl radical producing an olefine. The regeneration of quinones and formation of the corresponding phenols is expected to occur during the antifatigue activity. The phenol antioxidant, HBA is expected to produce a quinonoid compound and this is also expected to function in a similar way to other quinones. Another phenol, GM, which is also known to scavenge alkyl radicals showed good antifatigue performance. Tocopherols had effective antifatigue activity and are expected to have different antifatigue mechanisms from that of other quinones, hence αTOC was examined for its mechanisms during rubber fatiguing using HPLC analysis. Trimers of αTOC which were produced during vulcanisation are suggested to contribute to the fatigue activity observed. The evidence suggests that the trimers reproduce αTOC and a mechanism was proposed. Although antifatigue agents evaluated showed antifatigue activity, most of them had poor thermoxidative resistance, hence it was necessary to compensate for this by using a combination of antioxidants with the antifatigue agents. Reactive antioxidants which have the potential to graft on the polymer chains during reactive processing were used for this purpose. APMA was the most effective antioxidant among other evaluated reactive antioxidants. Although high ratio of grafting was achieved after optimisation of grafting conditions, it is suggested that this was achieved by long branches of APMA due to large extent of polymerisation. This is expected to cause maldistribution of APMA leading to reducing the effect of CB-D activity (while CB-A activity showed clear advantages for grafting). Further optimisation of grafting conditions is required in order to use APMA more effectively. Moreover, although synergistic effects between APMA and antifatigue agents were expected, none of the evaluated antifatigue agents, BQ, αTOC, γTOC and TMQ, showed significant synergism both in fatigue and thermoxidative resistance. They performed just as additives.
Resumo:
The mechanisms by which drops of secondary liquid dispersion ie. <100μ m, are collected, coalesced and transferred have been studied in particulate beds of different sizes and heights of glass ballotini. The apparatus facilitated different coalescer cell arrangements. The liquid-liquid system was toluene/de-ionised water. The inlet drop size distribution was measured by microscopy and using the Malvern Particle Size analyser; the outlet dispersion was sized by photography. The effect of packed height and packing size upon critical velocity, pressure drop and coalescence efficiency have been investigated. Single and two phase flow pressure drops across the packing were correlated by modified Blake-Kozeny equations. Two phase pressure drop was correlated by two equations, one for large ballotini sizes (267μm - 367μm), the other for small ballotini sizes (93μm- 147.5μm). The packings were efficient coalescers up to critical velocities of 3 x 10-2 m/s to 5 x 10-2 m/s. The saturation was measured across the bed using relative permeability and a mathematical model developed which related this profile to measured pressure drops. Filter coefficients for the range of packing studied were found to be accurately predicted from a modified queueing drop model.