968 resultados para Developmentally Important Genes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The periaqueductal gray (PAG) has been reported as a potential site for opioid regulation of behavioral selection. Opioid-mediated behavioral and physiological responses differ between nulliparous and multiparous females. This study addresses the effects of multiple reproductive experiences on mu-, kappa- and delta-opioid receptor (Oprm1, Oprk1, and Oprd1 respectively) gene activity and mu, kappa and delta protein expression (MOR, KOR and DOR respectively) in the PAG of the female rats. This was done by evaluating the opioid gene expression using real-time (RT-PCR) and quantification of each protein receptor by Western blot analysis. The RT-PCR results show that multiple reproductive experiences increase Oprm1 and Oprk1 gene expression. Western blot analysis revealed increased MOR and KOR while DOR protein was decreased in multiparous animals. Taken together, these data suggest that multiple reproductive experiences influence both gene activity and opioid receptor expression in the PAG. Post-translational mechanisms seem particularly relevant for DOR expression. Thus, opioid transmission in the PAG might be modulated by different mechanisms of multiparity-induced plasticity according to the opioid receptor type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gap junction channels, formed by connexins (Cx), are involved in the maintenance of tissue homeostasis, cell growth, differentiation, and development. Several studies have shown that Cx43 is involved in the control of wound healing in dermal tissue. However, it remains unknown whether Cx43 plays a role in the control of liver fibrogenesis. Our study investigated the roles of Cx43 heterologous deletion on carbon tetrachloride (CCl(4))-induced hepatic fibrosis in mice. We administered CCl(4) to both Cx43-deficient (Cx43(+/-)) and wild-type mice and examined hepatocellular injury and collagen deposition by histological and ultrastructural analyses. Serum biochemical analysis was performed to quantify liver injury. Hepatocyte proliferation was analyzed immunohistochemically. Protein and messenger RNA (mRNA) expression of liver connexins were evaluated using immunohistochemistry as well as immunoblotting analysis and quantitative real-time PCR. We demonstrated that Cx43(+/-) mice developed excessive liver fibrosis compared with wild-type mice after CCl(4)-induced chronic hepatic injury, with thick and irregular collagen fibers. Histopathological evaluation showed that Cx43(+/-) mice present less necroinflammatory lesions in liver parenchyma and consequent reduction of serum aminotransferase activity. Hepatocyte cell proliferation was reduced in Cx43(+/-) mice. There was no difference in Cx32 and Cx26 protein or mRNA expression in fibrotic mice. Protein expression of Cx43 increased in CCl(4)-treated mice, although with aberrant protein location on cytoplasm of perisinusoidal cells. Our results demonstrate that Cx43 plays an important role in the control and regulation of hepatic fibrogenesis. Microsc. Res. Tech. 74:421-429, 2011. (C) 2010 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oral squamous cell carcinoma (OSCC) may arise from potentially malignant oral lesions. All-trans retinoic acid (atRA), which plays a role in cell growth and differentiation, has been studied as a possible chemotherapeutic agent in the prevention of this progression. While the mechanism by which atRA suppresses cell growth has not been completely elucidated, it is known that homeobox genes are atRA targets. To determine if these genes are involved in the atRA-mediated OSCC growth inhibition, PCR array was performed to evaluate the expression of 84 homeobox genes in atRA-sensitive SCC-25 cells compared to atRA-resistant SCC-9 cells following 7 days with atRA treatment. Results showed that the expression of 8 homeobox genes was downregulated and expression of 4 was upregulated in SCC-25 cells but not in SCC-9 cells. Gene expression levels were confirmed for seven of these genes by RT-qPCR. Expression of three genes that showed threefold downregulation was evaluated in SCC-25 cells treated with atRA for 3, 5, and 7 days. Three different patterns of atRA-dependent gene expression were observed. ALX1 showed downregulation only on day 7. DLX3 showed reduced expression on day 3 and further reduced on clay 7. TLX1 showed downregulation only on days 5 and 7. Clearly the expression of homeobox genes is modulated by atRA in OSCC cell lines. However, the time course of this modulation suggests that these genes are not direct targets of atRA mediating OSCC growth suppression. Instead they appear to act as downstream effectors of atRA signaling. J. Cell. Biochem. 111: 1437-1444, 2010. (C) 2010 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of salivary glands entails the proliferation of epithelial cells from the stomatodeum into the underlying ectomesenchyme, culminating in a complex network of ducts and acinar bulbs. The extent to which mucins regulate this process is unknown, but they appear to mediate luminal space formation and maturation. Our aim was to examine mucin expression patterns during the morphogenesis of human salivary glands. Mucin expression - MUC1, 2, 3, 4, 5AC, 5B, 6, and 16 - was analyzed in specimens of developing human salivary glands, obtained from fetuses at 4-24 weeks` gestation, and fully developed salivary glands by immunohistochemistry. Expression patterns were analyzed qualitatively according to the development stage of the salivary glands. Mucins 1, 3, 4, 5B, and 16 were expressed during salivary gland development - being stronger in all ductal segments by the final phases of branching morphogenesis and in mature glands. Acinar cells were negative for most mucins, including MUC1 in mature salivary glands. Mucins 2, 5AC, and 6 were not expressed. Mucins MUC1, 3, 4, 5B, and 16 are expressed in developing human salivary glands and in mature glands, suggesting important roles in the maturation and maintenance of the ductal network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oral squamous cell carcinoma (OSCC) accounts for more than 90% of the malignant neoplasms that arise in the mucosa of the upper aerodigestive tract. Recent studies of cleft lip/palate have shown the association of genes involved in cancer. WNT pathway genes have been associated with several types of cancer and recently with cleft lip/palate. To investigate if genes associated with cleft lip/palate were also associated with oral cancer, we genotyped 188 individuals with OSCC and 225 control individuals for markers in AXIN2, AXIN1, GSK3 beta, WNT3A, WNT5A, WNT8A, WNT11, WNT3, and WNT9B. Statistical analysis was performed with PLINK 1.06 software to test for differences in allele frequencies of each polymorphism between cases and controls. We found association of SNPs in GSK3B (p = 0.0008) and WNT11 (p = 0.03) with OSCC. We also found overtransmission of GSK3B haplotypes in OSCC cases. Expression analyses showed up-regulation of WNT3A, GSK3B, and AXIN1 and down-regulation of WNT11 in OSCC in comparison with control tissues (P < 0.001). Additional studies should focus on the identification of potentially functional variants in these genes as contributors to human clefting and oral cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperplastic polyps have traditionally been regarded as nonneoplastic polyps lacking malignant potential. The demonstration of genetic alterations within these lesions indicates an underlying neoplastic cause. There is evidence that hyperplastic polyps are heterogeneous. Most are innocuous, but subsets may have malignant potential. Risk factors for neoplastic progression include multiple, large, and proximally located polyps. Aberrant methylation resulting in the silencing of cancer genes may be an important underlying mechanism, particularly in pathways progressing to tumors with DNA microsatellite instability. Lesions intermediate between hyperplastic polyp and cancer include admired polyps and serrated adenomas. Currently, pathologists have different thresholds for diagnosing serrated adenomas, including the distinction from large hyperplastic polyps. Reasons for over looking this pathway in the past may include rapid tumor progression and the fact that proximally located hyperplastic polyps may be flat and not especially numerous. Management of the serrated pathway of colorectal neoplasia may require novel approaches to screening, early detection, and prevention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Important pathogenic alterations within established cancers are acquired during the premalignant stage. These genetic alterations can be grouped into specific neoplastic pathways that differ within and between anatomical sites. By understanding the mechanisms that determine the initiation and progression of each pathway, it will be possible to develop novel approaches to the diagnosis, prevention and treatment of cancer. This chapter outlines the principles underlying the molecular characterization of pre-malignant lesions, taking colorectal neoplasia as the main model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The continued increase in tuberculosis (TB) rates and the appearance of extremely resistant Mycobacterium tuberculosis strains (XDR-TB) worldwide are some of the great problems of public health. In this context, DNA immunotherapy has been proposed as an effective alternative that could circumvent the limitations of conventional drugs. Nonetheless, the molecular events underlying these therapeutic effects are poorly understood. Methods We characterized the transcriptional signature of lungs from mice infected with M. tuberculosis and treated with heat shock protein 65 as a genetic vaccine (DNAhsp65) combining microarray and real-time polymerase chain reaction analysis. The gene expression data were correlated with the histopathological analysis of lungs. Results The differential modulation of a high number of genes allowed us to distinguish DNAhsp65-treated from nontreated animals (saline and vector-injected mice). Functional analysis of this group of genes suggests that DNAhsp65 therapy could not only boost the T helper (Th)1 immune response, but also could inhibit Th2 cytokines and regulate the intensity of inflammation through fine tuning of gene expression of various genes, including those of interleukin-17, lymphotoxin A, tumour necrosis factor-cl, interleukin-6, transforming growth factor-beta, inducible nitric oxide synthase and Foxp3. In addition, a large number of genes and expressed sequence tags previously unrelated to DNA-therapy were identified. All these findings were well correlated with the histopathological lesions presented in the lungs. Conclusions The effects of DNA therapy are reflected in gene expression modulation; therefore, the genes identified as differentially expressed could be considered as transcriptional biomarkers of DNAhsp65 immunotherapy against TB. The data have important implications for achieving a better understanding of gene-based therapies. Copyright (C) 2008 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We tested the hypothesis that X-linked genes determining stature which are subject to skewed or non-random X-inactivation can account for discordance in height in monozygotic female twins. Height discordant female monozygotic adult twins (20 pairs) were identified from the Australian Twin Registry, employing the selection criteria of proven monozygosity and a measured height discordance of at least 5 cm. Differential X-inactivation was examined in genomic DNA extracted from peripheral lymphocytes by estimating differential methylation of alleles at the polymorphic CAG triplet repeat of the Androgen receptor gene (XAR). There were 17/20 MZ pairs heterozygous at this locus and informative for analysis. Of these, 10/17 both had random X-inactivation, 5/17 showed identical X-inactivation patterns of non random inactivation and 2/17 (12%) showed discordant X-inactivation. There was no relationship between inactivation patterns and self-report chorionicity. We conclude that non-random X-inactivation does not appear to be a major contributor to intra-pair height discordance in female MZ twins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim was to examine the functional importance in the norepinephrine transporter (NET) of (i) the phenylalanine residue at position 531 in transmembrane domain (TMD) 11 by mutating it to tyrosine in the rat (rF531Y) and human (hF531Y) NETs and (ii) the highly conserved tyrosine residues at positions 249 in TMD 4 of human NET (hNET) (mutated to alanine: hY249A) and 271 in TMD 5, by mutating to alanine (hY271A), phenylalanine (hY271F) and histidine (hY271H). The effects of the mutations on NET function were for uptake of the substrates, examined by expressing the mutant and wildtype NETs in COS-7 cells and measuring the K-m and V-max for uptake of the substrates, [H-3]norepinephrine, [H-3]MPP+ and [H-3]dopamine, the K-D and B-max for [H-3]nisoxetine binding and the K-i of the inhibitors, nisoxetine, desipramine and cocaine, for inhibition of [H-3]norepinephrine uptake. The K-m values of the substrates were lower for the mutants at amino acid 271 than hNET and unaffected for the other mutants, and each mutant had a significantly lower than NET for substrate uptake. The mutations at position 271 caused an increase in the K-i or K-D values of nisoxetine, desipramine and cocaine, but there were no effects for the other mutations. Hence, the 271 tyrosine residue in TMD 5 is an important determinant of NET function, with the mutants showing an increase in the apparent affinities of substrates and a decrease in the apparent affinities of inhibitors, but the 249 tyrosine and 531 phenylalanine residues do not have a major role in determining NET function. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eukaryotic phenotypic diversity arises from multitasking of a core proteome of limited size. Multitasking is routine in computers, as well as in other sophisticated information systems, and requires multiple inputs and outputs to control and integrate network activity. Higher eukaryotes have a mosaic gene structure with a dual output, mRNA (protein-coding) sequences and introns, which are released from the pre-mRNA by posttranscriptional processing. Introns have been enormously successful as a class of sequences and comprise up to 95% of the primary transcripts of protein-coding genes in mammals. In addition, many other transcripts (perhaps more than half) do not encode proteins at all, but appear both to be developmentally regulated and to have genetic function. We suggest that these RNAs (eRNAs) have evolved to function as endogenous network control molecules which enable direct gene-gene communication and multitasking of eukaryotic genomes. Analysis of a range of complex genetic phenomena in which RNA is involved or implicated, including co-suppression, transgene silencing, RNA interference, imprinting, methylation, and transvection, suggests that a higher-order regulatory system based on RNA signals operates in the higher eukaryotes and involves chromatin remodeling as well as other RNA-DNA, RNA-RNA, and RNA-protein interactions. The evolution of densely connected gene networks would be expected to result in a relatively stable core proteome due to the multiple reuse of components, implying,that cellular differentiation and phenotypic variation in the higher eukaryotes results primarily from variation in the control architecture. Thus, network integration and multitasking using trans-acting RNA molecules produced in parallel with protein-coding sequences may underpin both the evolution of developmentally sophisticated multicellular organisms and the rapid expansion of phenotypic complexity into uncontested environments such as those initiated in the Cambrian radiation and those seen after major extinction events.