774 resultados para Desgaste do rebolo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cada vez mais, os principais objetivos na indústria é a produção a baixo custo, com a máxima qualidade e com o tempo de fabrico o mais curto possível. Para atingir esta meta, a indústria recorre, frequentemente, às máquinas de comando numérico (CNC), uma vez que com esta tecnologia torna se capaz alcançar uma elevada precisão e um tempo de processamento mais baixo. As máquinas ferramentas CNC podem ser aplicadas em diferentes processos de maquinagem, tais como: torneamento, fresagem, furação, entre outros. De todos estes processos, o mais utilizado é a fresagem devido à sua versatilidade. Utiliza-se normalmente este processo para maquinar materiais metálicos como é o caso do aço e dos ferros fundidos. Neste trabalho, são analisados os efeitos da variação de quatro parâmetros no processo de fresagem (velocidade de corte, velocidade de avanço, penetração radial e penetração axial), individualmente e a interação entre alguns deles, na variação da rugosidade num aço endurecido (aço 12738). Para essa análise são utilizados dois métodos de otimização: o método de Taguchi e o método das superfícies. O primeiro método foi utilizado para diminuir o número de combinações possíveis e, consequentemente, o número de ensaios a realizar é denominado por método de Taguchi. O método das superfícies ou método das superfícies de resposta (RSM) foi utilizado com o intuito de comparar os resultados obtidos com o método de Taguchi, de acordo com alguns trabalhos referidos na bibliografia especializada, o RSM converge mais rapidamente para um valor ótimo. O método de Taguchi é muito conhecido no setor industrial onde é utilizado para o controlo de qualidade. Apresenta conceitos interessantes, tais como robustez e perda de qualidade, sendo bastante útil para identificar variações do sistema de produção, durante o processo industrial, quantificando a variação e permitindo eliminar os fatores indesejáveis. Com este método foi vi construída uma matriz ortogonal L16 e para cada parâmetro foram definidos dois níveis diferentes e realizados dezasseis ensaios. Após cada ensaio, faz-se a medição superficial da rugosidade da peça. Com base nos resultados obtidos das medições da rugosidade é feito um tratamento estatístico dos dados através da análise de variância (Anova) a fim de determinar a influência de cada um dos parâmetros na rugosidade superficial. Verificou-se que a rugosidade mínima medida foi de 1,05m. Neste estudo foi também determinada a contribuição de cada um dos parâmetros de maquinagem e a sua interação. A análise dos valores de “F-ratio” (Anova) revela que os fatores mais importantes são a profundidade de corte radial e da interação entre profundidade de corte radial e profundidade de corte axial para minimizar a rugosidade da superfície. Estes têm contribuições de cerca de 30% e 24%, respetivamente. Numa segunda etapa este mesmo estudo foi realizado pelo método das superfícies, a fim de comparar os resultados por estes dois métodos e verificar qual o melhor método de otimização para minimizar a rugosidade. A metodologia das superfícies de resposta é baseada num conjunto de técnicas matemáticas e estatísticas úteis para modelar e analisar problemas em que a resposta de interesse é influenciada por diversas variáveis e cujo objetivo é otimizar essa resposta. Para este método apenas foram realizados cinco ensaios, ao contrário de Taguchi, uma vez que apenas em cinco ensaios consegue-se valores de rugosidade mais baixos do que a média da rugosidade no método de Taguchi. O valor mais baixo por este método foi de 1,03μm. Assim, conclui-se que RSM é um método de otimização mais adequado do que Taguchi para os ensaios realizados. Foram obtidos melhores resultados num menor número de ensaios, o que implica menos desgaste da ferramenta, menor tempo de processamento e uma redução significativa do material utilizado.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work shows a contribution to the studies of development and solid sinterization of a metallic matrix composite MMC that has as starter materials 316L stainless steel atomized with water, and two different Tantalum Carbide TaC powders, with averages crystallite sizes of 13.78 nm and 40.66 nm. Aiming the metallic matrix s density and hardness increase was added different nanometric sizes of TaC by dispersion. The 316L stainless steel is an alloy largely used because it s high resistance to corrosion property. Although, its application is limited by the low wear resistance, consequence of its low hardness. Besides this, it shows low sinterability and it cannot be hardened by thermal treatments traditional methods because of the austenitic structure, face centered cubic, stabilized mainly in nickel presence. Steel samples added with TaC 3% wt (each sample with different type of carbide), following a mechanical milling route using conventional mill for 24 hours. Each one of the resulted samples, as well as the pure steel sample, were compacted at 700 MPa, room temperature, without any addictive, uniaxial tension, using a 5 mm diameter cylindrical mold, and quantity calculated to obtain compacted final average height of 5 mm. Subsequently, were sintered in vacuum atmosphere, temperature of 1290ºC, heating rate of 20ºC/min, using different soaking times of 30 and 60 min and cooled at room temperature. The sintered samples were submitted to density and micro-hardness analysis. The TaC reforced samples showed higher density values and an expressive hardness increase. The complementary analysis in optical microscope, scanning electronic microscope and X ray diffractometer, showed that the TaC, processed form, contributed with the hardness increase, by densification, itself hardness and grains growth control at the metallic matrix, segregating itself to the grain boarders

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The failure of materials is always an unwelcome event for several reasons: human lives are put in danger, economic losses, and interference in the availability of products and services. Although the causes of failures and behaviour of materials can be known, the prevention of such a condition is difficult to be guaranteed. Among the failures, wear abrasion by the low voltage is the kind of failure that occurs in more equipment and parts industry. The Plants Sucroalcooleiras suffer significant losses because of such attrition, this fact that motivated their choice for the development of this work. For both, were considered failures in the swing hammers desfibradores stopped soon after the exchange provided in accordance with tonnage of cane processed, then were analyzed by the level of wear testing of rubber wheel defined by the standard ASTM G65-91.The failures were classified as to the origin of the cause and mechanism, moreover, were prepared with samples of welding procedures according to ASME code, sec. IX as well, using the technique of thermal spraying to analyze the performance of these materials produced in laboratories, and compares them with the solder used in the plant. It was observed that the bodies-of-proof prepared by the procedure described as welding, and the thermal spraying the results of losing weight have been minimized significantly compared to the preparations in the plant. This is because the use of techniques more appropriate and more controlled conditions of the parameters of welding. As for the thermal spraying, this technique has presented a satisfactory result, but requires the use of these coatings in the best condition for real affirmation of the results

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective is to analyze the abrasive wear resistance to the low stress of the elements that make up the organs of road machinery that are exposed directly to contact with abrasives. These samples were analyzed after these elements are coated superficially by the process of welding electrode coated with (SAER) and the manual process of coating type LVOF thermal spraying. As well, is to provide suggestions for a better recovery and return of these elements, which are reducing costs and avoiding downtime in the fronts of service. The samples were made from a substrate of carbon ABNT 1045 tempered steel, following the same specifications and composition of metals and alloys of constituents was followed the standard governing the dimensions of these samples and in accordance with the corresponding size. The results were evaluated by testing the hardness, abrasion resistance to wear by the low stress and the loss of volume involving the microstructure of coatings analyzed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ceramics materials have good properties including chemical stability, high hardness and wear resistance. Moreover, due to its fragility, can suffer failure under relatively low levels of tension. Actually zirconia is the material of choice in metal free dental prostheses used in dentistry due its inertia in physiological environment, good bending strength, hardness and fracture toughness. The alumina and mixed tungsten and titanium carbides additions, acting as reinforcement elements in the zirconia matrix, have as their main objective the improvement of mechanical properties of this material. In this work, samples of zirconia, zirconia with 30% wt of alumina and zirconia with 30% wt mixed carbides were analyzed. The samples were sintered by uniaxial hot pressing on 30 MPa pressure, for 1 hour in an argon atmosphere. They were physically characterized by porosity and density measurements, and mechanically by 3-points bending strength and Vickers microhardness. The X-ray diffraction was used for the phase identifications and microstructure was examined by scanning electron microscopy (SEM). The addition of mixed carbides as reinforcement elements in zirconia matrix provides improvements in all properties analyzed in this work. The alumina addition has dropped the zirconia strength, although it caused improvement in other properties

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal powder sintering appears to be promising option to achieve new physical and mechanical properties combining raw material with new processing improvements. It interest over many years and continue to gain wide industrial application. Stainless steel is a widely accepted material because high corrosion resistance. However stainless steels have poor sinterability and poor wear resistance due to their low hardness. Metal matrix composite (MMC) combining soft metallic matrix reinforced with carbides or oxides has attracted considerable attention for researchers to improve density and hardness in the bulk material. This thesis focuses on processing 316L stainless steel by addition of 3% wt niobium carbide to control grain growth and improve densification and hardness. The starting powder were water atomized stainless steel manufactured for Höganäs (D 50 = 95.0 μm) and NbC produced in the UFRN and supplied by Aesar Alpha Johnson Matthey Company with medium crystallite size 16.39 nm and 80.35 nm respectively. Samples with addition up to 3% of each NbC were mixed and mechanically milled by 3 routes. The route1 (R1) milled in planetary by 2 hours. The routes 2 (R2) and 3 (R3) milled in a conventional mill by 24 and 48 hours. Each milled samples and pure sample were cold compacted uniaxially in a cylindrical steel die (Ø 5 .0 mm) at 700 MPa, carried out in a vacuum furnace, heated at 1290°C, heating rate 20°C stand by 30 and 60 minutes. The samples containing NbC present higher densities and hardness than those without reinforcement. The results show that nanosized NbC particles precipitate on grain boundary. Thus, promote densification eliminating pores, control grain growth and increase the hardness values

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Propuesta del método de cálculo de la incertidumbre para la máquina de fatiga por flexión rotativa -- Fuentes de incertidumbre del ensayo de desgaste flexión rotativa -- Identificación de las fuentes de incertidumbre para el ensayo de fatiga por flexión rotativa -- Fuentes de incertidumbre por magnitud de entrada para el mensurando del número de ciclos hasta la ruptura -- Determinación de los coeficientes de sensibilidad para el mensurando del número de ciclos -- Cálculo de incertidumbre estándar combinada para el mensurando del esfuerzo a la fatiga -- Determinación del error de los instrumentos de medición -- Estimación de la incertidumbre de la medida para el ensayo de fatiga por flexión rotativa

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This masther dissertation presents a contribution to the study of 316L stainless steel sintering aiming to study their behavior in the milling process and the effect of isotherm temperature on the microstructure and mechanical properties. The 316L stainless steel is a widely used alloy for their high corrosion resistance property. However its application is limited by the low wear resistance consequence of its low hardness. In previous work we analyzed the effect of sintering additives as NbC and TaC. This study aims at deepening the understanding of sintering, analyzing the effect of grinding on particle size and microstructure and the effect of heating rate and soaking time on the sintered microstructure and on their microhardness. Were milled 316L powders with NbC at 1, 5 and 24 hours respectively. Particulates were characterized by SEM and . Cylindrical samples height and diameter of 5.0 mm were compacted at 700 MPa. The sintering conditions were: heating rate 5, 10 and 15◦C/min, temperature 1000, 1100, 1200, 1290 and 1300◦C, and soaking times of 30 and 60min. The cooling rate was maintained at 25◦C/min. All samples were sintered in a vacuum furnace. The sintered microstructure were characterized by optical and electron microscopy as well as density and microhardness. It was observed that the milling process has an influence on sintering, as well as temperature. The major effect was caused by firing temperature, followed by the grinding and heating rate. In this case, the highest rates correspond to higher sintering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The system built to characterize electrodes and, consequently, deposited fine films are constituted by a hollow cathode that works to discharges and low pressures (approximately 10-3 to 5 mbar), a source DC (0 to 1200 V), a cylindrical camera of closed borossilicato for flanges of stainless steel with an association of vacuum bombs mechanical and spread. In the upper flange it is connected the system of hollow cathode, which possesses an entrance of gas and two entrances for its refrigeration, the same is electrically isolated of the rest of the equipment and it is polarized negatively. In front of the system of hollow cathode there is a movable sample in stainless steel with possibility of moving in the horizontal and vertical. In the vertical, the sample can vary its distance between 0 and 70 mm and, in the horizontal, can leave completely from the front of the hollow cathode. The sample and also the cathode hollow are equipped with cromel-alumel termopares with simultaneous reading of the temperatures during the time of treatment. In this work copper electrodes, bronze, titanium, iron, stainless steel, powder of titanium, powder of titanium and silício, glass and ceramic were used. The electrodes were investigated relating their geometry change and behavior of the plasma of the cavity of hollow cathode and channel of the gas. As the cavity of hollow cathode, the analyzed aspects were the diameter and depth. With the channel of the gas, we verified the diameter. In the two situations, we investigated parameters as flow of the gas, pressure, current and applied tension in the electrode, temperature, loss of mass of the electrode with relationship at the time of use. The flow of gas investigated in the electrodes it was fastened in a work strip from 15 to 6 sccm, the constant pressure of work was among 2.7 to 8 x 10-2 mbar. The applied current was among a strip of work from 0,8 to 0,4 A, and their respective tensions were in a strip from 400 to 220 V. Fixing the value of the current, it was possible to lift the curve of the behavior of the tension with the time of use. That curves esteem in that time of use of the electrode to its efficiency is maximum. The temperatures of the electrodes were in the dependence of that curves showing a maximum temperature when the tension was maximum, yet the measured temperatures in the samples showed to be sensitive the variation of the temperature in the electrodes. An accompaniment of the loss of mass of the electrode relating to its time of use showed that the electrodes that appeared the spherical cavities lost more mass in comparison with the electrodes in that didn't appear. That phenomenon is only seen for pressures of 10-2 mbar, in these conditions a plasma column is formed inside of the channel of the gas and in certain points it is concentrated in form of spheres. Those spherical cavities develop inside of the channel of the gas spreading during the whole extension of the channel of the gas. The used electrodes were cut after they could not be more used, however among those electrodes, films that were deposited in alternate times and the electrodes that were used to deposit films in same times, those films were deposited in the glass substrata, alumina, stainless steel 420, stainless steel 316, silício and steel M2. As the eletros used to deposit films in alternate time as the ones that they were used to deposit in same times, the behavior of the thickness of the film obeyed the curve of the tension with relationship the time of use of the electrode, that is, when the tension was maximum, the thickness of the film was also maximum and when the tension was minimum, the thickness was minimum and in the case where the value of the tension was constant, the thickness of the film tends to be constant. The fine films that were produced they had applications with nano stick, bio-compatibility, cellular growth, inhibition of bacterias, cut tool, metallic leagues, brasagem, pineapple fiber and ornamental. In those films it was investigated the thickness, the adherence and the uniformity characterized by sweeping electronic microscopy. Another technique developed to assist the production and characterization of the films produced in that work was the caloteste. It uses a sphere and abrasive to mark the sample with a cap impression, with that cap form it is possible to calculate the thickness of the film. Through the time of life of the cathode, it was possible to evaluate the rate of waste of its material for the different work conditions. Values of waste rate up to 3,2 x 10-6 g/s were verified. For a distance of the substratum of 11 mm, the deposited film was limited to a circular area of 22 mm diameter mm for high pressures and a circular area of 75 mm for pressure strip. The obtained films presented thickness around 2,1 µm, showing that the discharge of arch of hollow cathode in argon obeys a curve characteristic of the tension with the time of life of the eletrodo. The deposition rate obtained in this system it is of approximately 0,18 µm/min

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O trabalho foca-se no estudo biomecânico de próteses do joelho. Através de modelos computacionais pretendeu-se obter o melhor desempenho da prótese, variando as geometrias e os materiais. Os modelos foram submetidos à compressão com carga assimétrica para avaliação do comportamento da prótese e zonas de maior desgaste ósseo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A artroplastia é a solução para diversos problemas que destabilizam a articulação do joelho. Os profissionais de saúde tem ao seu dispor várias próteses, variando essencialmente a geometria e o material. O trabalho foca-se no estudo biomecânico de próteses do joelho. Através de um modelo aproximado pretendeu-se obter o melhor desempenho de uma prótese, variando geometrias e materiais. O modelo biomecânico foi submetido a um carregamento à compressão permitindo avaliar as zonas de maior desgaste ósseo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Sociais, Departamento de Sociologia, 2016.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Primary cementing is one of the main operations in well drilling responsible for the mechanical stability and zonal isolation during the production of oil. However, the cement sheath is constantly under mechanical stresses and temperature variations caused by the recovery of heavy oil. In order to minimize fracture and wear of the cement sheath, new admixtures are developed to improve the properties of Portland cement slurries and avoid environmental contamination caused by leaking gas and oil. Polymers with the ability to form polymeric films are candidates to improve the properties of hardened cement slurries, especially their fracture energy. The present study aimed at evaluating the effect of the addition of a chitosan suspension on cement slurries in order to improve the properties of the cement and increase its performance on heavy oil recovery. Chitosan was dissolved in acetic ac id (0.25 M and 2 M) and added to the formulation of the slurries in different concentrations. SEM analyses confirmed the formation of polymeric films in the cementitious matrix. Strength tests showed higher fracture energy compared to slurries without the addition of chitosan. The formation of the polymeric films also reduced the permeability of the slurry. Therefore, chitosan suspensions can be potentially used as cementing admixtures for heavy oil well applications

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El estrés laboral se presenta como una serie de reacciones físicas y emocionales que ocurren cuando las exigencias del trabajo no igualan las capacidades, los recursos o necesidades del profesional en anestesia y enfermería. Cuando éste se torna excesivo superando la tolerancia del organismo llevando consigo graves consecuencias como desgaste en la salud, actuación profesionalmente pobre, repercusión en la seguridad del paciente, en la vida familiar, deterioro psíquico-emocional. El objetivo es identificar el nivel estrés que presenta el personal de sala de operaciones que labora en el Hospital Nacional General "Dr. Jorge Arturo Mena" Santiago de María, y así conocer sintomatología psicosomática y nivel de estrés. La metodología utilizada en el estudio fue la hipotética deductiva. Para la recolección de la información se hizo uso de un cuestionario integrado inicialmente por datos generales y además un test psicológico dirigido al estrés laboral en profesionales de anestesiología y enfermería el cual consta: el cuestionario EAE está formado por 50 preguntas el cual midió el nivel de estrés laboral en el que se encontró el personal de anestesia y enfermería. La población fue constituida por 15 profesionales en anestesiología y 15 profesionales de enfermería que trabajan en el Hospital Nacional general "Dr. Jorge Arturo Mena" Santiago de María, Usulután, y tomando en cuenta es una población pequeña se incluyeron a todos los sujetos en el estudio. Los resultados fueron procesados mediante el Programa Estadístico Para las Ciencias Sociales (SPSS) versión 19, con el que se realizaron tablas de frecuencia y la prueba U de Mann Whitney, obteniendo que la mayoría de anestesistas tienen nivel de estrés bajo y en el personal de enfermería prevalece el nivel de estrés medio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Engenharia Electrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015