995 resultados para Deposition temperatures
Resumo:
The importance of metal coating technologies drives the continuous improvement of metal deposition techniques for application in a wide range of industrial sectors. This work presents the foundations of a new process technology for the deposition of titanium coatings on steel tube substrates using supersonic powder streams and impact site laser heating, known as Supersonic Laser Deposition (SLD). Metallic deposits are obtained under appropriate impact conditions without the need for exceeding the melting point of the deposited material or substrate leading to improved coating quality. Details of the experimental approach are presented along with the general characteristics of the titanium coating produced using this novel coatings method. © 2011 Elsevier B.V. All rights reserved.
Resumo:
Zinc oxide (ZnO) thin films were deposited at high rates ( > 50 nm min-1) using a unique technique known as high target utilisation sputtering (HiTUS). The films obtained possess good crystallographic orientation, low surface roughness, very low stress and excellent piezoelectric properties. We have utilised the films to develop highly sensitive biosensors based on thickness longitudinal mode (TLM) thin film bulk acoustic resonators (FBARs). The FBARs have the fundamental TLM at a frequency near 1.5 GHz and quality factor Q higher than 1,000, which is one of the largest values ever reported for ZnO-based FBARs. Bovine Serum Albumin (BSA) solutions with different concentrations were placed on the top of different sets of identical FBARs and their responses to mass-loading from physically adsorbed protein coatings were investigated. These resonators demonstrated a high sensitivity and thus have a great potential as gravimetric sensors for biomedical applications. © 2011 Inderscience Enterprises Ltd.
Resumo:
Fig trees are pollinated by fig wasps, which also oviposit in female flowers. The wasp larvae gall and eat developing seeds. Although fig trees benefit from allowing wasps to oviposit, because the wasp offspring disperse pollen, figs must prevent wasps fr
Resumo:
Based on the hydrodynamic model and Shore Protection Manual (CERC - USA) we have calculated wave field characteristics in the typical wind conditions (wind velocity equal to 13m/s in the high frequency direction of the wind regime). Comparison between measured and calculated wave parameters was presented and these results were corresponded to each other. The following main wave characteristics were calculated: -Pattern of the refraction wave field. -Average wave height field. -Longshore current velocity field in surf zone. From distribution features of wave field characteristics in research areas, it could be summarized as following: - The formation of wave fields in the research areas was unequal because of their local difference of hydrometeorological conditions, river discharge, bottom relief… - At Cuadai (Dai mouth, Hoian) area in the N direction of incident wave field, wave has caused serious variation of the coastline. The coastline in the whole region, especially, at the south of the mouth was eroded and the foreland in the north of the mouth was deposited. - At Cai river mouth (Nhatrang) area in the E direction of incident wave field, wave has effected strongly and directly to the inshore and channel structure. - At Phanthiet bay area in the SW direction of incident wave field, wave has effected strongly to the whole shoreline from Da point to Ne point and caused serious erosion.
Resumo:
A detailed study of the fortification of normal creosote and low temperature creosote with As sub(2) O sub(3) at 40°C, 50°C, 60°C, 70°C, 80°C and 90°C was carried out. When compared to normal creosote, low temperature creosote has been found to combine more easily with As sub(2) O sub(3) when temperature was . raised from 40 to 90°C. The incorporated arsenic values obtained shows that low temperature creosote with high phenolic content, retains considerably more As sub(2) O sub(3) and a maximum of 0.2180% w/w can be incorporated in low temperature creosote at 90°C.
Resumo:
YBCO thin films are currently used in several HTS-based electronics applications. The performance of devices, which may include microwave passive components (filters, resonators), grain boundary junctions or spintronic multilayer structures, is determined by film quality, which in turn depends on the deposition technology used and growth parameters. We report on results from nonintrusive Optical Emission Spectroscopy of the plasma during YBCO thin film deposition in a high-pressure on-axis sputtering system under different conditions, including small trace gas additions to the sputtering gas. We correlate these results with the compositional and structural changes which affect the DC and microwave properties of YBCO films. Film morphology, composition, structure and in- and out-of-plane orientation were assessed; T, and microwave surface resistance measurements were made using inductive and resonator techniques. Comparison was made with films sputtered in an off-axis 2-opposing magnetron system.
Resumo:
The combined effect of radiation and refrigeration on the shelf life of hilsa, Tanualosa ilisha was studied by monitoring the microbiological, chemical and sensory changes of unirradiated and irradiated fish samples using low dose irradiation, doses of 300 krad, 600 krad and 900 krad. Irradiation (900 krad) dramatically reduced population of bacteria, namely total viable counts 48.850cfu per gm for unirradiated, 31.850cfu per gm and 19.600cfu per gm of 300 krad and 600 krad, respectively. The effect was more pronounced at the higher dose (900 krad), total viable count were 14.100cfu per gm. Another microbial indicator total mould counts (TMC) was 8.750cfu per gm, 6.350cfu per gm, and 19.600cfu per gm for 300 krad and 600 krad, respectively. The effect was more pronounced at the higher dose (900 krad) where total viable counts were 14,100cfu per gm. Total volatile nitrogen values increased slowly attaining a value of 101.02mgN per 100gm for unirradiated T. ilisha during refrigerated storage, whereas for irradiated fish, lower values of 71.13, 59.33 and 47.03mgN per 100gm muscle were recorded. Sensory evaluation showed a good correlation with bacterial populations on the basis of overall acceptability scores.
Resumo:
We have investigated single grain boundaries (GBs) isolated in coated conductors produced by Metal-Organic Deposition (MOD). When a magnetic field is swept in the film plane, an angle-dependent crossover from boundary to grain limited critical current density Jc is found. In the force-free orientation, even at fields as high as 8 T, the GBs still limit Jc. We deduce that this effect is a direct consequence of GB meandering. We have employed these single GB results to explain the dependence of Jc of polycrystalline tracks on their width: in-plane measurements become flatter as the tracks are narrowed down. This result is consistent with the stronger GB limitation at field configurations close to force-free found from the isolated boundaries. Our study shows that for certain geometries even at high fields the effect of GBs cannot be neglected.
Resumo:
As these results indicate, photo-CVD coating is a robust process that allows for the creation of core-shell nanoparticles. In the present work we demonstrated that photo-CVD can effectively coat Fe2O3 particles with silica for purposes of biological applications. TDMA results combined with TEM images indicate that all particles are effectively coated and that particle coating thicknesses can be tuned to desired thickness depending on the application. In addition, the ability to vary coating properties and to coat high concentrations of particles makes this technique of interest for industrial production where uniform properties are needed for large quantities of particles [2]. Copyright © 2010 by ASME.
Resumo:
The structural, optical, electrical and physical properties of amorphous carbon deposited from the filtered plasma stream of a vacuum arc were investigated. The structure was determined by electron diffraction, neutron diffraction and energy loss spectroscopy and the tetrahedral coordination of the material was confirmed. The measurements gave a nearest neighbour distance of 1.53 Å, a bond angle of 110 and a coordination number of four. A model is proposed in which the compressive stress generated in the film by energetic ion impact produces pressure and temperature conditions lying well inside the region of the carbon phase diagram within which diamond is stable. The model is confirmed by measurements of stress and plasmon energy as a function of ion energy. The model also predicts the formation of sp2-rich materials on the surface owing to stress relaxation and this is confirmed by a study of the surface plasmon energy. Some nuclear magnetic resonance, infrared and optical properties are reported and the behaviour of diodes using tetrahedral amorphous carbon is discussed. © 1991.