964 resultados para Dental stress analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A set of hypersingular integral equations of a three-dimensional finite elastic solid with an embedded planar crack subjected to arbitrary loads is derived. Then a new numerical method for these equations is proposed by using the boundary element method combined with the finite-part integral method. According to the analytical theory of the hypersingular integral equations of planar crack problems, the square root models of the displacement discontinuities in elements near the crack front are applied, and thus the stress intensity factors can be directly calculated from these. Finally, the stress intensity factor solutions to several typical planar crack problems in a finite body are evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stress fields and failure mechanisms have been investigated in composites with particles either surface treated or untreated under uniaxial tension. Previous experimental observation of failure mechanisms in a composite with untreated particles showed that tensile cracks occurred mostly at the polar region of the particle and grew into interfacial debonding. In a composite with surface-treated particles, however, shear yielding and shear cracking proceeded along the interphase-matrix interface at the polar area of the matrix and thus may improve the mechanical behaviour of the material. The finite element calculations showed that octahedral shear stress at the polar and longitudinal areas of the particle treated by coupling agents is much larger than that of materials with untreated particles, and the shear stress distribution around the interface is sensitive to the interphase property. The results suggest that a th ree-phase model can describe the composites with surface-treated fillers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A three-dimensional finite element analysis has been used to determine the internal stresses in a three-phase composite. The stresses have been determined for a variety of interphase properties, the thicknesses of the interphase and the volume fractions of particles. Young's modulus has been calculated from a knowledge of these stresses and the applied deformation. The calculations show that stress distributions in the matrix and the mechanical properties are sensitive to the interphase property in the three-phase composites. The interfacial stresses in the three-dimensional analysis are in agreement with results obtained by an axisymmetric analysis. The predicted bulk modulus in three-dimensional analysis agrees well with the theoretical solution obtained by Qui and Weng, but it presents a great divergence from that in axisymmetric analyses. An investigation indicates that this divergence may be caused by the difference in the unit cell structure between two models. A comparison of the numerically predicted bulk and shear modulus for two-phase composites with the theoretical results indicates that the three-dimensional analysis gives quite satisfactory results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical investigation on the simple polycrystals containing three symmetrical tilt grain boundaries (GBs) is carried out within the framework of crystal plasticity which precisely considers the finite deformation and finite lattice rotation as well as elastic anisotropy. The calculated results show that the slip geometry and the redistribution of stresses arising from the anisotropy and boundary constraint play an important role in the plastic deformation in the simple polycrystals. The stress level along GB is sensitive to the load level and misorientation, and the stresses along QB are distributed nonuniformly. The GB may exhibit a softening or strengthening feature, which depends on the misorientation angle. The localized deformation bands usually develop accompanying the GB plastic deformation, the impingement of the localized band on the GB may result in another localized deformation band. The yield stresses with different misorientation angles are favorably compared with the experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present an exact higher-order asymptotic analysis on the near-crack-tip fields in elastic-plastic materials under plane strain, Mode I. A four- or five-term asymptotic series of the solutions is derived. It is found that when 1.6 < n less-than-or-equal-to 2.8 (here, n is the hardening exponent), the elastic effect enters the third-order stress field; but when 2.8< n less-than-or-equal-to 3.7 this effect turns to enter the fourth-order field, with the fifth-order field independent. Moreover, if n>3.7, the elasticity only affects the fields whose order is higher than 4. In this case, the fourth-order field remains independent. Our investigation also shows that as long as n is larger than 1.6, the third-order field is always not independent, whose amplitude coefficient K3 depends either on K1 or on both K1 and K2 (K1 and K2 arc the amplitude coefficients of the first- and second-order fields, respectively). Firmly, good agreement is found between our results and O'Dowd and Shih's numerical ones[8] by comparison.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The elastic plane problem of a rigid co-circular arc inclusion under arbitrary loads is dealt with. Applying Schwarz's reflection principle integrated with the analysis of the singularity of complex stress functions, the general solution of the problem is found and several closed-form solutions to some problems of practical importance are given. Finally, the stress distribution at the arc inclusion end is examined and a comparison is made with that of the rigid line inclusion end to show the effect of curvature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an exact analysis for high order asymptotic field of the plane stress crack problem. It has been shown that the second order asymptotic field is not an independent eigen field and should be matched with the elastic strain term of the first order asymptotic field. The second order stress field ahead of the crack tip is quite small compared with the first order stress field. The stress field ahead of crack tip is characterized by the HRR field. Hence the J integral can be used as a criterion for crack initiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A HIGHER-ORDER asymptotic analysis of a stationary crack in an elastic power-law hardening material has been carried out for plane strain, Mode 1. The extent to which elasticity affects the near-tip fields is determined by the strain hardening exponent n. Five terms in the asymptotic series for the stresses have been derived for n = 3. However, only three amplitudes can be independently prescribed. These are K1, K2 and K5 corresponding to amplitudes of the first-, second- and fifth-order terms. Four terms in the asymptotic series have been obtained for n = 5, 7 and 10; in these cases, the independent amplitudes are K1, K2 and K4. It is found that appropriate choices of K2 and K4 can reproduce near-tip fields representative of a broad range of crack tip constraints in moderate and low hardening materials. Indeed, fields characterized by distinctly different stress triaxiality levels (established by finite element analysis) have been matched by the asymptotic series. The zone of dominance of the asymptotic series extends over distances of about 10 crack openings ahead of the crack tip encompassing length scales that are microstructurally significant. Furthermore, the higher-order terms collectively describe a spatially uniform hydrostatic stress field (of adjustable magnitude) ahead of the crack. Our results lend support to a suggestion that J and a measure of near-tip stress triaxiality can describe the full range of near-tip states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plastic stress-strain fields of two types of steel specimens loaded to large deformations are studied. Computational results demonstrate that, owing to the fact that the hardening exponent of the material varies as strain enlarges and the blunting of the crack tip, the well known HRR stress field in the plane strain model can only hold for the stage of a small plastic strain. Plastic dilatancy is shown to have substantial effects on strain distributions and blunting. To justify the constitutive equations used for analysis and to check the precision of computations, the load-deflection of a three-point bend beam and the load-elongation of an axisymmetric bar notched by a V-shaped cut were tested and recorded. The computed curves are in good accordance with experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with fracture analyses in 3-dimensional bodies containing a surface crack. A general solution of stress-strain fields at crack tip is proposed. Based on the stress-strain fields obtained, a high-order 3-dimensional special element is established to calculate the stress intensity factors in a plate with a surface crack. The variation of stress intensity factors with geometric parameters is investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The shear strength of soils or rocks developed in a landslide usually exhibits anisotropic and nonlinear behavior. The process of sedimentation and subsequent consolidation can cause anisotropy of sedimentary soils or rocks, for instance. Nonlinearity of failure envelope could be attributed to "interlocking" or "dilatancy" of the material, which is generally dependent upon the stress level. An analytical method considering both anisotropy and nonlinearity of the failure envelops of soil and rocks is presented in the paper. The nonlinearfailure envelopes can be determined from routine triaxial tests. A spreadsheet program, which uses the Janbu's Generalized Procedure of Slice and incorporates anisotropic, illustrates the implementation of the approach and nonlinearfailure envelops. In the analysis, an equivalent Mohr-Coulomb linear failure criterion is obtained by drawing a tangent to the nonlinear envelope of an anisotropic soil at an appropriate stress level. An illustrative example is presented to show the feasibility and numerical efficiency of the method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microstructural heterogeneity and stress fluctuation play important roles in the failure process of brittle materials. In this paper, a generalized driven nonlinear threshold model with stress fluctuation is presented to study the effects of microstructural heterogeneity on continuum damage evolution. As an illustration, the failure process of cement material under explosive loading is analyzed using the model. The result agrees well with the experimental one, which proves the efficiency of the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

6 p. [+ 7 p. Supplementary Information]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Size effects of mechanical behaviors of materials are referred to the variation of the mechanical behavior due to the sample sizes changing from macroscale to micro-/nanoscales. At the micro-/nanoscale, since sample has a relatively high specific surface area (SSA) (ratio of surface area to volume), the surface although it is often neglected at the macroscale, becomes prominent in governing the energy effect, although it is often neglected at the macroscale, becomes prominent in governing the mechanical behavior. In the present research, a continuum model considering the surface energy effect is developed through introducing the surface energy to total potential energy. Simultaneously, a corresponding finite element method is developed. The model is used to analyze the axial equilibrium strain problem for a Cu nanowire at the external loading-free state. As another application of the model, from dimensional analysis, the size effects of uniform compression tests on the microscale cylinder specimens for Ni and Au single crystals are analyzed and compared with experiments in literatures. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the radially symmetric nonlinear von Kármán plate equations for circular or annular plates in the limit of small thickness. The loads on the plate consist of a radially symmetric pressure load and a uniform edge load. The dependence of the steady states on the edge load and thickness is studied using asymptotics as well as numerical calculations. The von Kármán plate equations are a singular perturbation of the Fӧppl membrane equation in the asymptotic limit of small thickness. We study the role of compressive membrane solutions in the small thickness asymptotic behavior of the plate solutions.

We give evidence for the existence of a singular compressive solution for the circular membrane and show by a singular perturbation expansion that the nonsingular compressive solution approach this singular solution as the radial stress at the center of the plate vanishes. In this limit, an infinite number of folds occur with respect to the edge load. Similar behavior is observed for the annular membrane with zero edge load at the inner radius in the limit as the circumferential stress vanishes.

We develop multiscale expansions, which are asymptotic to members of this family for plates with edges that are elastically supported against rotation. At some thicknesses this approximation breaks down and a boundary layer appears at the center of the plate. In the limit of small normal load, the points of breakdown approach the bifurcation points corresponding to buckling of the nondeflected state. A uniform asymptotic expansion for small thickness combining the boundary layer with a multiscale approximation of the outer solution is developed for this case. These approximations complement the well known boundary layer expansions based on tensile membrane solutions in describing the bending and stretching of thin plates. The approximation becomes inconsistent as the clamped state is approached by increasing the resistance against rotation at the edge. We prove that such an expansion for the clamped circular plate cannot exist unless the pressure load is self-equilibrating.