987 resultados para Density value
Resumo:
We report here a new empirical density functional that is constructed based on the performance of OPBE and PBE for spin states and SN 2 reaction barriers and how these are affected by different regions of the reduced gradient expansion. In a previous study [Swart, Sol̀, and Bickelhaupt, J. Comput. Methods Sci. Eng. 9, 69 (2009)] we already reported how, by switching between OPBE and PBE, one could obtain both the good performance of OPBE for spin states and reaction barriers and that of PBE for weak interactions within one and the same (SSB-sw) functional. Here we fine tuned this functional and include a portion of the KT functional and Grimme's dispersion correction to account for π- π stacking. Our new SSB-D functional is found to be a clear improvement and functions very well for biological applications (hydrogen bonding, π -π stacking, spin-state splittings, accuracy of geometries, reaction barriers)
Resumo:
A comparative systematic study of the CrO2F2 compound has been performed using different conventional ab initio methodologies and density functional procedures. Two points have been analyzed: first, the accuracy of results yielded by each method under study, and second, the computational cost required to reach such results. Weighing up both aspects, density functional theory has been found to be more appropriate than the Hartree-Fock (HF) and the analyzed post-HF methods. Hence, the structural characterization and spectroscopic elucidation of the full CrO2X2 series (X=F,Cl,Br,I) has been done at this level of theory. Emphasis has been given to the unknown CrO2I2 species, and specially to the UV/visible spectra of all four compounds. Furthermore, a topological analysis in terms of charge density distributions has revealed why the valence shell electron pair repulsion model fails in predicting the molecular shape of such CrO2X2 complexes
Resumo:
A set of connections among several nuclear and electronic indexes of reactivity in the framework of the conceptual Density Functional Theory by using an expansion ofthe energy functional in terms of the total number of electrons and the normal coordinates within a canonical ensemble was derived. The relations obtained provided explicit links between important quantities related to the chemical reactivity of a system. This paper particularly demonstrates that the derivative of the electronic energy with respect to the external potential of a system in its equilibrium geometry was equal to the negative of the nuclear repulsion derivative with respect to the external potential
Resumo:
The present work provides a generalization of Mayer's energy decomposition for the density-functional theory (DFT) case. It is shown that one- and two-atom Hartree-Fock energy components in Mayer's approach can be represented as an action of a one-atom potential VA on a one-atom density ρ A or ρ B. To treat the exchange-correlation term in the DFT energy expression in a similar way, the exchange-correlation energy density per electron is expanded into a linear combination of basis functions. Calculations carried out for a number of density functionals demonstrate that the DFT and Hartree-Fock two-atom energies agree to a reasonable extent with each other. The two-atom energies for strong covalent bonds are within the range of typical bond dissociation energies and are therefore a convenient computational tool for assessment of individual bond strength in polyatomic molecules. For nonspecific nonbonding interactions, the two-atom energies are low. They can be either repulsive or slightly attractive, but the DFT results more frequently yield small attractive values compared to the Hartree-Fock case. The hydrogen bond in the water dimer is calculated to be between the strong covalent and nonbonding interactions on the energy scale
Resumo:
A conceptually new approach is introduced for the decomposition of the molecular energy calculated at the density functional theory level of theory into sum of one- and two-atomic energy components, and is realized in the "fuzzy atoms" framework. (Fuzzy atoms mean that the three-dimensional physical space is divided into atomic regions having no sharp boundaries but exhibiting a continuous transition from one to another.) The new scheme uses the new concept of "bond order density" to calculate the diatomic exchange energy components and gives them unexpectedly close to the values calculated by the exact (Hartree-Fock) exchange for the same Kohn-Sham orbitals
Resumo:
In this study we report on the electronic and vibrational (hyper)polarizabilities of donor–acceptorsubstituted azobenzene. It is observed that both electronic and vibrational contributions to the electricdipole first hyperpolarizability of investigated photoactive molecule substantially depend on the conformation. The contributions to the nuclear relaxation first hyperpolarizability are found to be quite important in the case of two considered isomers (cis and trans). Although the double-harmonic term is found to be the largest in terms of magnitude, it is shown that the total value of the nuclear relaxation contribution to vibrational first hyperpolarizability is a result of subtle interplay of higher-order contributions. As a part of the study, we also assess the performance of long-range-corrected densityfunctional theory in determining vibrational contributions to electric dipole (hyper)polarizabilities. In most cases, the applied long-range-corrected exchange correlation potentials amend the drawbacks of their conventional counterparts
Resumo:
Introduction: The beneficial effect of physical exercise on bone mineral density (BMD) is at least partly explained by the forces exerted directly on the bones. Male runners present generally higher BMD than sedentary individuals. We postulated that the proximal tibia BMD is related to the running distance as well as to the magnitude of the shocks (while running) in male runners. Methods: A prospective study (three yearly measurements) included 81 healthy male subjects: 16 sedentary lean subjects and three groups of runners (5-30 km/week, n=19; 30-50 km/week, n=29; 50-100 km/week, n=17). Several measurements were performed at the proximal tibia level: volumetric BMD (vBMD), cortical index (CI) i.e. an index of cortical bone thickness and peak accelerations (an index of shocks during heel strike) while running (measured by a 3-D accelerometer). A general linear model assessed the prediction of vBMD or CI by a) simple effects (running distance, peak accelerations, time) and b) interactions (for instance if vBMD prediction by peak acceleration depends on running distance). Results: CI and vBMD a) increase with running distance to reach a plateau over 30 km/wk, b) are positively associated with peak accelerations over 30 km/week. Discussion: Running may be associated with high peak accelerations in order to have beneficial effects on BMD. More important strains are needed to be associated with the same increase in BMD during running sessions of short duration than those of long duration. Conclusion: CI and vBMD are associated with the magnitude of the shocks during heel strike in runners. Key words: Bone mineral density, strains, physical exercise, running distance.
Resumo:
CD4 expression in HIV replication is paradoxical: HIV entry requires high cell-surface CD4 densities, but replication requires CD4 down-modulation. However, is CD4 density in HIV+ patients affected over time? Do changes in CD4 density correlate with disease progression? Here, we examined the role of CD4 density for HIV disease progression by longitudinally quantifying CD4 densities on CD4+ T cells and monocytes of ART-naive HIV+ patients with different disease progression rates. This was a retrospective study. We defined three groups of HIV+ patients by their rate of CD4+ T cell loss, calculated by the time between infection and reaching a CD4 level of 200 cells/microl: fast (<7.5 years), intermediate (7.5-12 years), and slow progressors (>12 years). Mathematical modeling permitted us to determine the maximum CD4+ T cell count after HIV seroconversion (defined as "postseroconversion CD4 count") and longitudinal profiles of CD4 count and density. CD4 densities were quantified on CD4+ T cells and monocytes from these patients and from healthy individuals by flow cytometry. Fast progressors had significantly lower postseroconversion CD4 counts than other progressors. CD4 density on T cells was lower in HIV+ patients than in healthy individuals and decreased more rapidly in fast than in slow progressors. Antiretroviral therapy (ART) did not normalize CD4 density. Thus, postseroconversion CD4 counts define individual HIV disease progression rates that may help to identify patients who might benefit most from early ART. Early discrimination of slow and fast progressors suggests that critical events during primary infection define long-term outcome. A more rapid CD4 density decrease in fast progressors might contribute to progressive functional impairments of the immune response in advanced HIV infection. The lack of an effect of ART on CD4 density implies a persistent dysfunctional immune response by uncontrolled HIV infection.
Resumo:
S100B is a prognostic factor for melanoma as elevated levels correlate with disease progression and poor outcome. We determined its prognostic value based on updated information using serial determinations in stage IIb/III melanoma patients. 211 Patients who participated in the EORTC 18952 trial, evaluating efficacy of adjuvant intermediate doses of interferon α2b (IFN) versus observation, entered a corollary study. Over a period of 36 months, 918 serum samples were collected. The Cox time-dependent model was used to assess prognostic value of the latest (most recent) S100B determination. At first measurement, 178 patients had S100B values <0.2 μg/l and 33 ≥ 0.2 μg/l. Within the first group, 61 patients had, later on, an increased value of S100B (≥ 0.2 μg/l). An initial increased value of S100B, or during follow-up, was associated with worse distant metastasis-free survival (DMFS); hazard ratio (HR) of S100B ≥ 0.2 versus S100B < 0.2 was 5.57 (95% confidence interval (CI) 3.81-8.16), P < 0.0001, after adjustment for stage, number of lymph nodes and sex. In stage IIb patients, the HR adjusted for sex was 2.14 (95% CI 0.71, 6.42), whereas in stage III, the HR adjusted for stage, number of lymph nodes and sex was 6.76 (95% CI 4.50-10.16). Similar results were observed regarding overall survival (OS). Serial determination of S100B in stage IIb-III melanoma is a strong independent prognostic marker, even stronger compared to stage and number of positive lymph nodes. The prognostic impact of S100B ≥ 0.2 μg/l is more pronounced in stage III disease compared with stage IIb.
Resumo:
Perfusion lung scan, whether associated with a ventilation lung scan or not, is frequently used in the diagnosis of pulmonary emboli. The characteristics of perfusion lung scan are reviewed. The added diagnostic value of standard chest X-ray and of ventilation scan is discussed, as well as its use in the intensive care unit.
Resumo:
Purpose: We evaluated the potential for hybrid PET/MRI devices to provide integrated metabolic, functional and anatomic characterisation of patients with suspected coronary artery disease.Methods and Materials: Ten patients (5 with suspected hibernating myocardium and 5 healthy volunteers) performed an imaging study using a hybrid PET/MRI (Philips). Viability assessed by 18F-FDG was performed in diseased patients along with MRI anatomic and functional study and reassessed within 30 minutes by conventional PET/CT. Non-contrast right coronary artery (RCA) targeted and whole heart 3D coronary angio-MRI using ECG-gating and respiratory navigator was performed in healthy volunteers with reconstruction performed using MPR and volume rendering. The extent of metabolic defect (MD) using PET/MRI and PET/CT was compared in patients and coronary territories (LAD, CX, RCA). Assessability of coronary lumen was judged as good, sub-optimal or non-assessable using a 16-segments coronary model.Results: Metabolic assessment was successful in all patients with MD being 19.2% vs 18.3% using PET/MRI and PET/CT, respectively (P=ns). The MD was 10.2%, 6 %, and 3 % vs 9.3%, 6 % and 3 % for LAD, CX and RCA territories, respectively (P= ns). Coronary angio-MRI was successful in all volunteers with 66 coronary segments visualised overall. The RCA was fully visualised in 4/5 volunteers and the left coronary arteries in 4/5 volunteers. Assessability in visualised segments was good, sub-optimal and non-assessable in 88 %, 2 % and 10 %, respectively.Conclusion: Hybrid PET/MRI devices may enable metabolic evaluation comparable to PET/CT with additional value owing to accurate functional and anatomical information including coronary assessment.
Resumo:
Aims: In a head-to-head study, we compared the effects of strontium ranelate (SrRan) and alendronate (ALN), anti-osteoporotic agents with antifracture efficacy, on bone microstructure, a component of bone quality, hence of bone strength. Methods: In a randomised, double-dummy, double-blind controlled trial, 88 postmenopausal osteoporotic women were randomised to SrRan 2g/day or ALN 70mg/week for 2 years. Microstructure of the distal radius and distal tibia were assessed by HR-pQCT after 3,6,12,18 and 24 months of treatment. Primary endpoint was HR-pQCT variables relative changes from baseline. An ITT analysis was applied. Results: Baseline characteristics were similar in both groups (mean ±SD): age: 63.6±7.5 vs. 63.7±7.6 yrs; L1-L4T Score: -2.7±0.8 vs. -2.8±0.8g/cm², Cortical Thickness (CTh), trabecular bone fraction (BV/TV) and cortical density=721±242 vs. 753±263μm, 9.5±2.5 vs. 9.3±2.7%, and 750±87 vs. 745±78mg/cm3 respectively. Over 2 yrs, distal radius values changes were within 1 to 2% without significant differences except cortical density. In contrast distal tibia CTh, BV/TV, trabecular and cortical densities increased significantly more in the SrRan group than in the ALN group (Table). No significant between-group differences were observed for the remaining measured parameter (trabecular number, trabecular spacing, and trabecular thickness). After 2 years, L1- L4 and hip aBMD increases were similar to results from pivotal trials (L1-L4:+6.5% and +5.6%;total hip:+4.1% and +2.9%, in Sr- Ran and ALN groups, respectively). In the SrRan group, bALP increased by a median of 18% (p<0.001) and sCTX decreased by a median of -16% (p=0.005) while in the ALN group, bALP and CTX decreased by median of -31% (p<0.001) and -59% (p<0.001) respectively. Relative changes from baseline to last observation (%) SrRan ALN Estimated between group difference p value CTh (μm) 6.29±9.53 0.93±6.23 5.411±1.836 0.004 BV/TV (%) 2.48±5.13 0.84±3.81 1.783±0.852 0.040 Trabecular density (mgHA/cm3) 2.47±5.07 0.88±4.00 1.729±0.859 0.048 Cortical density (mgHA/cm3) 1.43±2.77 0.36±2.14 1.137±0.530 0.045 The two treatments were well tolerated. Conclusions: Within the constraints related to HRpQCT technology, it appears that strontium ranelate has greater effects than alendronate on distal tibia cortical thickness, trabecular and cortical bone densities in women with postmenopausal osteoporosis after two years of treatment. A concomitant significant increase in bone formation marker is observed in the SrRan group.
Resumo:
A number of experimental methods have been reported for estimating the number of genes in a genome, or the closely related coding density of a genome, defined as the fraction of base pairs in codons. Recently, DNA sequence data representative of the genome as a whole have become available for several organisms, making the problem of estimating coding density amenable to sequence analytic methods. Estimates of coding density for a single genome vary widely, so that methods with characterized error bounds have become increasingly desirable. We present a method to estimate the protein coding density in a corpus of DNA sequence data, in which a ‘coding statistic’ is calculated for a large number of windows of the sequence under study, and the distribution of the statistic is decomposed into two normal distributions, assumed to be the distributions of the coding statistic in the coding and noncoding fractions of the sequence windows. The accuracy of the method is evaluated using known data and application is made to the yeast chromosome III sequence and to C.elegans cosmid sequences. It can also be applied to fragmentary data, for example a collection of short sequences determined in the course of STS mapping.