958 resultados para Deformed defect
Resumo:
BACKGROUND: Because of denervation supersensitivity, a miotic pupil in a sympathetically-denervated eye dilates in response to a dilute or weak alpha-1-agonist drug. A reversal of anisocoria after topical apraclonidine is considered as a positive test result that diagnoses a unilateral Horner syndrome. HISTORY AND SIGNS: Two women aged 34 and 46 years with a cocaine-confirmed oculosympathetic defect (Horner syndrome) were tested with 1 % topical apraclonidine on separate days. THERAPY AND OUTCOME: In one patient, her miotic Horner pupil dilated marginally but not enough to reverse the baseline anisocoria. Additionally, the upper lid on the same side retracted. There was no discernable effect of apraclonidine on the normal, contralateral eye. In the second patient, there was no pupillary response to apraclonidine but there was resolution of her ptosis. CONCLUSIONS: Neither patient demonstrated a reversal of anisocoria, the current criterion for diagnosing a Horner syndrome using apraclonidine. Thus, these two patients with an established oculosympathetic defect were said to have a "negative test" for Horner syndrome. Yet both women showed subtle pupil and/or lid changes in response to apraclonidine that were consistent with sympathetic denervation supersensitivity. Reversal of anisocoria following topical apraclonidine does not occur in all patients with a unilateral oculosympathetic defect and more specific parameters for defining a positive test result might optimize apraclonidine's utility as a diagnostic test for Horner syndrome
Resumo:
Congenital stationary night blindness (CSNB) is a heterogeneous retinal disorder characterized by visual impairment under low light conditions. This disorder is due to a signal transmission defect from rod photoreceptors to adjacent bipolar cells in the retina. Two forms can be distinguished clinically, complete CSNB (cCSNB) or incomplete CSNB; the two forms are distinguished on the basis of the affected signaling pathway. Mutations in NYX, GRM6, and TRPM1, expressed in the outer plexiform layer (OPL) lead to disruption of the ON-bipolar cell response and have been seen in patients with cCSNB. Whole-exome sequencing in cCSNB patients lacking mutations in the known genes led to the identification of a homozygous missense mutation (c.1807C>T [p.His603Tyr]) in one consanguineous autosomal-recessive cCSNB family and a homozygous frameshift mutation in GPR179 (c.278delC [p.Pro93Glnfs(∗)57]) in a simplex male cCSNB patient. Additional screening with Sanger sequencing of 40 patients identified three other cCSNB patients harboring additional allelic mutations in GPR179. Although, immunhistological studies revealed Gpr179 in the OPL in wild-type mouse retina, Gpr179 did not colocalize with specific ON-bipolar markers. Interestingly, Gpr179 was highly concentrated in horizontal cells and Müller cell endfeet. The involvement of these cells in cCSNB and the specific function of GPR179 remain to be elucidated.
Resumo:
Soils play a fundamental role in the production of human foods. The Oxisols in the state of Paraná are among the richest and most productive soils in Brazil, but degradation and low porosity are frequently documented, due to intensive farming involving various management strategies and the application of high-tech solutions. This study aims to investigate changes in the porosity of two Red Oxisols (Latossolos Vermelhos), denoted LVef (eutroferric) and LVdf (dystroferric) under conventional and no-tillage soil management, with a succession of annual crops of soybean, maize and wheat over a continuous period of more than 20 years. After describing the soil profiles under native forest, no-tillage management and conventional tillage using the crop profile method, deformed and non-deformed soil samples were collected from the volumes most compacted by human intervention and the physical, chemical and mineralogical properties analyzed. The various porosity classes (total pore volume, inter-aggregate porosity between channels and biological cavities) and intra-aggregate porosity (determined in 10 cm³ saturated clods subjected to a pressure of -10 kPa to obtain a pore volume with a radius (r eq), > 15 μm and < 15 μm). The results showed that the effects of no-tillage farming on porosity are more pronounced in both soil types. Porosity of the LVdf was higher than pf the LVef soil, whatever the management type. In the LVdf soil, only pores with a radius of > 15 μm were affected by farming whereas in the LVef soil, pores with a radius of < 15 μm were affected as well.
Resumo:
A key, yet often neglected, component of digital evolution and evolutionary models is the 'selection method' which assigns fitness (number of offspring) to individuals based on their performance scores (efficiency in performing tasks). Here, we study with formal analysis and numerical experiments the evolution of cooperation under the five most common selection methods (proportionate, rank, truncation-proportionate, truncation-uniform and tournament). We consider related individuals engaging in a Prisoner's Dilemma game where individuals can either cooperate or defect. A cooperator pays a cost, whereas its partner receives a benefit, which affect their performance scores. These performance scores are translated into fitness by one of the five selection methods. We show that cooperation is positively associated with the relatedness between individuals under all selection methods. By contrast, the change in the performance benefit of cooperation affects the populations' average level of cooperation only under the proportionate methods. We also demonstrate that the truncation and tournament methods may introduce negative frequency-dependence and lead to the evolution of polymorphic populations. Using the example of the evolution of cooperation, we show that the choice of selection method, though it is often marginalized, can considerably affect the evolutionary dynamics.
Resumo:
We discuss the relation between continuum bound states (CBSs) localized on a defect, and surface states of a finite periodic system. We model an experiment of Capasso et al. [F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, S-N. G. Chu, and A. Y. Cho, Nature (London) 358, 565 (1992)] using the transfer-matrix method. We compute the rate for intrasubband transitions from the ground state to the CBS and derive a sum rule. Finally we show how to improve the confinement of a CBS while keeping the energy fixed.
Resumo:
Myocardium undergoing remodeling in vivo exhibits insulin resistance that has been attributed to a shift from the insulin-sensitive glucose transporter GLUT4 to the fetal, less insulin-sensitive, isoform GLUT1. To elucidate the role of altered GLUT4 expression in myocardial insulin resistance, glucose uptake and the expression of the glucose transporter isoforms GLUT4 and GLUT1 were measured in adult rat cardiomyocytes (ARC). ARC in culture spontaneously undergo dedifferentiation, hypertrophy-like spreading, and return to a fetal-like gene expression pattern. Insulin stimulation of 2-deoxy-D-glucose uptake was completely abolished on day 2 and 3 of culture and recovered thereafter. Although GLUT4 protein level was reduced, the time-course of unresponsiveness to insulin did not correlate with altered expression of GLUT1 and GLUT4. However, translocation of GLUT4 to the sarcolemma in response to insulin was completely abolished during transient insulin resistance. Insulin-mediated phosphorylation of Akt was not reduced, indicating that activation of phosphatidylinositol 3-kinase (PI3K) was preserved. On the other hand, total and phosphorylated Cbl was reduced during insulin resistance, suggesting that activation of Cbl/CAP is essential for insulin-mediated GLUT4 translocation, in addition to activation of PI3K. Pharmacological inhibition of contraction in insulin-sensitive ARC reduced insulin sensitivity and lowered phosphorylated Cbl. The results suggest that transient insulin resistance in ARC is related to impairment of GLUT4 translocation. A defect in the PI3K-independent insulin signaling pathway involving Cbl seems to contribute to reduced insulin responsiveness and may be related to contractile arrest.
Resumo:
Although tissue engineering and cell therapies are becoming realistic approaches for medical therapeutics, it is likely that musculoskeletal applications will be among the first to benefit on a large scale. Cell sources for tissue engineering and cell therapies for tendon pathologies are reviewed with an emphasis on small defect tendon injuries as seen in the hand which could adapt well to injectable cell administration. Specifically, cell sources including tenocytes, tendon sheath fibroblasts, bone marrow or adipose-derived stem cells, amniotic cells, placenta cells and platelet-derivatives have been proposed to enhance tendon regeneration. The associated advantages and disadvantages for these different strategies will be discussed and evolving regulatory requirements for cellular therapies will also be addressed. Human progenitor tenocytes, along with their clinical cell banking potential, will be presented as an alternative cell source solution. Similar cell banking techniques have already been described with other progenitor cell types in the 1950's for vaccine production, and these "old" cell types incite potentially interesting therapeutic options that could be improved with modern innovation for tendon regeneration and repair.
Resumo:
We have used an axially symmetric deformed Thomas-Fermi model to evaluate the fission barrier of 240Pu as a function of the quadrupole moment Q2 for different values of the angular momentum L and temperature T. The fission stability diagram of this nucleus is investigated.
Resumo:
BACKGROUND: The SCN5A gene encodes for the α-subunit of the cardiac sodium channel NaV1.5, which is responsible for the rapid upstroke of the cardiac action potential. Mutations in this gene may lead to multiple life-threatening disorders of cardiac rhythm or are linked to structural cardiac defects. Here, we characterized a large family with a mutation in SCN5A presenting with an atrioventricular conduction disease and absence of Brugada syndrome. METHOD AND RESULTS: In a large family with a high incidence of sudden cardiac deaths, a heterozygous SCN5A mutation (p.1493delK) with an autosomal dominant inheritance has been identified. Mutation carriers were devoid of any cardiac structural changes. Typical ECG findings were an increased P-wave duration, an AV-block I° and a prolonged QRS duration with an intraventricular conduction delay and no signs for Brugada syndrome. HEK293 cells transfected with 1493delK showed strongly (5-fold) reduced Na(+) currents with altered inactivation kinetics compared to wild-type channels. Immunocytochemical staining demonstrated strongly decreased expression of SCN5A 1493delK in the sarcolemma consistent with an intracellular trafficking defect and thereby a loss-of-function. In addition, SCN5A 1493delK channels that reached cell membrane showed gain-of-function aspects (slowing of the fast inactivation, reduction in the relative fraction of channels that fast inactivate, hastening of the recovery from inactivation). CONCLUSION: In a large family, congregation of a heterozygous SCN5A gene mutation (p.1493delK) predisposes for conduction slowing without evidence for Brugada syndrome due to a predominantly trafficking defect that reduces Na(+) current and depolarization force.
Resumo:
We explore the phase diagram of a two-component ultracold atomic Fermi gas interacting with zero-range forces in the limit of weak coupling. We focus on the dependence of the pairing gap and the free energy on the variations in the number densities of the two species while the total density of the system is held fixed. As the density asymmetry is increased, the system exhibits a transition from a homogenous Bardeen-Cooper-Schrieffer (BCS) phase to phases with spontaneously broken global space symmetries. One such realization is the deformed Fermi surface superfluidity (DFS) which exploits the possibility of deforming the Fermi surfaces of the species into ellipsoidal form at zero total momentum of Cooper pairs. The critical asymmetries at which the transition from DFS to the unpaired state occurs are larger than those for the BCS phase. In this precritical region the DFS phase lowers the pairing energy of the asymmetric BCS state. We compare quantitatively the DFS phase to another realization of superconducting phases with broken translational symmetry: the single-plane-wave Larkin-Ovchinnikov-Fulde-Ferrell phase, which is characterized by a nonvanishing center-of-mass momentum of the Cooper pairs. The possibility of the detection of the DFS phase in the time-of-flight experiments is discussed and quantified for the case of 6Li atoms trapped in two different hyperfine states.
Resumo:
In order to evaluate the influence of continental crustal rocks on trace element budgets of serpentinized peridotites incorporated into the continental crust, we have analyzed the chemical composition of whole rock samples and minerals of the Geisspfad ultramafic complex (Swiss-Italian Alps). This complex represents a relict oceanic succession composed of serpentinites, ophicarbonates and metabasic rocks, emplaced into crustal gneisses during Alpine collision. Following peak metamorphic amphibolite facies conditions, fluid flow modified some of the trace element contents of ophicarbonates and deformed serpentinites close to the contact with country rocks. The fluid originated from the surrounding continental crustal rocks as documented by the increase of Pb in the serpentinites, and by the strongly negative all) values (-112 parts per thousand) of some ultramafic rocks close to the contact with surrounding gneisses. Little or no modification of the fluid mobile elements Li, B or U was observed in the serpentinite. In-situ analysis of light elements of serpentinite minerals indicate redistribution of light elements coupled to changes of mineral modes towards the outer 100-150 m of the massif. In the centre of the massif, Li is preferentially concentrated in olivine, while Be and B are hosted by tremolite. In contrast, at the outer rim of the massif, Li and Be are preferentially incorporated into diopside, and B into antigorite. This redistribution of light elements among the different minerals is visible in the serpentinite, at a maximum distance of -100-150 m from the ophicarbonate-metabasite contact. Our results show that interaction of ultramafic rocks and crust-derived fluids can be easily detected by studies of Pb and partial derivative D in whole rocks. We argue that small ultramafic bodies potentially record an emplacement-related trace element signature, and that crustal light element values in ultramafic rocks are not necessarily derived from a subducting slab. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Paroxysmal nocturnal hemoglobinuria (PNH) is a rare, acquired stem cell disorder, with its primary clinical manifestations being hemolytic anemia, marrow failure and thrombophilia. Chronic hemolysis, failures of the fibrinolytic system, increased leukocyte-derived tissue factor levels in plasma, procoagulant microparticles generated through complement-mediated damage of platelets and venous endothelium are related to the acquired hypercoagulable state. Visceral thrombosis (including hepatic veins and mesenteric veins), cerebrovascular events and pulmonary embolism predict a poor outcome. Thrombosis is also associated with significant morbidity during pregnancy. Depending on the sites of thrombosis, a score-based probability to predict outcome can be assigned. Abdominal vein thromboses account for the majority of morbidity and mortality related to thrombosis, and time-dependent trends suggest that mortality rates tend to decline, with the advent of evolution of therapeutic and diagnostic strategies. In contrast, mortality rates from cerebrovascular events display no significant decline. Prompt diagnosis requires both clinical suspicion and sophisticated imaging techniques, along with multidisciplinary therapeutic intervention. In the eculizumab era, a significant reduction of thrombotic events was observed during therapy, and long-term follow up is needed to establish any benefit in rates and pattern of this complication. However, up to now, only bone marrow transplantation permanently abolishes the coagulation defect.
Resumo:
Surgical tumor removal is often the treatment of choice in patients with head and neck squamous cell carcinoma. Depending on the extent of tumor resection, large defects are often produced in the individual head and neck regions, necessitating reconstructive surgery to avoid further functional impairment. In principle, this decision depends on the size and location of the defect, the aesthetic importance of the region and the functional significance of the area to be replaced. Reconstructive free flap procedures in patients who have undergone radiotherapy or exhibit vessel depletion in the neck due to multiple previous surgical interventions are particularly challenging. In order to ensure the best possible outcomes of surgical oncology therapies under difficult circumstances, this paper discusses the important factors and variables that can increase the success rate of microvascular grafts in irradiated or multiply resected patients.
Resumo:
Epitaxial and fully strained SrRuO3 thin films have been grown on SrTiO3(100). At initial stages the growth mode is three-dimensional- (3D-)like, leading to a finger-shaped structure aligned with the substrate steps and that eventually evolves into a 2D step-flow growth. We study the impact that the defect structure associated with this unique growth mode transition has on the electronic properties of the films. Detailed analysis of the transport properties of nanometric films reveals that microstructural disorder promotes a shortening of the carrier mean free path. Remarkably enough, at low temperatures, this results in a reinforcement of quantum corrections to the conductivity as predicted by recent models of disordered, strongly correlated electronic systems. This finding may provide a simple explanation for the commonly observed¿in conducting oxides-resistivity minima at low temperature. Simultaneously, the ferromagnetic transition occurring at about 140 K, becomes broader as film thickness decreases down to nanometric range. The relevance of these results for the understanding of the electronic properties of disordered electronic systems and for the technological applications of SrRuO3¿and other ferromagnetic and metallic oxides¿is stressed.
Resumo:
In a murine model of allergic asthma, we found that Tyk-2((-/-)) asthmatic mice have induced peribronchial collagen deposition, mucosal type mast cells in the lung, IRF4 and hyperproliferative lung Th2 CD4(+) effector T cells over-expressing IL-3, IL-4, IL-5, IL-10 and IL-13. We also observed increased Th9 cells expressing IL-9 and IL-10 as well as T helper cells expressing IL-6, IL-10 and IL-21 with a defect in IL-17A and IL-17F production. This T helper phenotype was accompanied by increased SOCS3 in the lung of Tyk-2 deficient asthmatic mice. Finally, in vivo treatment with rIL-17A inhibited local CD4(+)CD25(+)Foxp3(+) T regulatory cells as well as Th2 cytokines without affecting IL-9 in the lung. These results suggest a role of Tyk-2 in different subsets of T helper cells mediated by SOCS3 regulation that is relevant for the treatment of asthma, cancer and autoimmune diseases.