945 resultados para Davenport, Horace Willard, 912-
Resumo:
The extensive shoreline deposits of Lake Chilwa, southern Malawi, a shallow water body today covering 600 km2 of a basin of 7500 km2, are investigated for their record of late Quaternary highstands. OSL dating, applied to 36 samples from five sediment cores from the northern and western marginal sand ridges, reveal a highstand record spanning 44 ka. Using two different grouping methods, highstand phases are identified at 43.733.3 ka, 26.221.0 ka and 17.912.0 ka (total error method) or 38.435.5 ka, 24.322.3 ka, 16.215.1 ka and 13.512.7 ka (Finite Mixture Model age components) with two further discrete events recorded at 11.01 0.76 ka and 8.52 0.56 ka. Highstands are comparable to the timing of wet phases from other basins in East and southern Africa, demonstrating wet conditions in the region before the LGM, which was dry, and a wet Lateglacial, which commenced earlier in the southern compared to northern hemisphere in East Africa. We find no evidence that wet phases are insolation driven, but analysis of the dataset and GCM modelling experiments suggest that Heinrich events may be associated with enhanced monsoon activity in East Africa in both timing and as a possible causal mechanism.
Resumo:
Tremendous progress in plant proteomics driven by mass spectrometry (MS) techniques has been made since 2000 when few proteomics reports were published and plant proteomics was in its infancy. These achievements include the refinement of existing techniques and the search for new techniques to address food security, safety, and health issues. It is projected that in 2050, the worlds population will reach 912 billion people demanding a food production increase of 3470% (FAO, 2009) from todays food production. Provision of food in a sustainable and environmentally committed manner for such a demand without threatening natural resources, requires that agricultural production increases significantly and that postharvest handling and food manufacturing systems become more efficient requiring lower energy expenditure, a decrease in postharvest losses, less waste generation and food with longer shelf life. There is also a need to look for alternative protein sources to animal based (i.e., plant based) to be able to fulfill the increase in protein demands by 2050. Thus, plant biology has a critical role to play as a science capable of addressing such challenges. In this review, we discuss proteomics especially MS, as a platform, being utilized in plant biology research for the past 10 years having the potential to expedite the process of understanding plant biology for human benefits. The increasing application of proteomics technologies in food security, analysis, and safety is emphasized in this review. But, we are aware that no unique approach/technology is capable to address the global food issues. Proteomics-generated information/resources must be integrated and correlated with other omics-based approaches, information, and conventional programs to ensure sufficient food and resources for human development now and in the future.
Resumo:
Snow provides large seasonal storage of freshwater, and information about the distribution of snow mass as Snow Water Equivalent (SWE) is important for hydrological planning and detecting climate change impacts. Large regional disagreements remain between estimates from reanalyses, remote sensing and modelling. Assimilating passive microwave information improves SWE estimates in many regions but the assimilation must account for how microwave scattering depends on snow stratigraphy. Physical snow models can estimate snow stratigraphy, but users must consider the computational expense of model complexity versus acceptable errors. Using data from the National Aeronautics and Space Administration Cold Land Processes Experiment (NASA CLPX) and the Helsinki University of Technology (HUT) microwave emission model of layered snowpacks, it is shown that simulations of the brightness temperature difference between 19 GHz and 37 GHz vertically polarised microwaves are consistent with Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and Special Sensor Microwave Imager (SSM/I) retrievals once known stratigraphic information is used. Simulated brightness temperature differences for an individual snow profile depend on the provided stratigraphic detail. Relative to a profile defined at the 10 cm resolution of density and temperature measurements, the error introduced by simplification to a single layer of average properties increases approximately linearly with snow mass. If this brightness temperature error is converted into SWE using a traditional retrieval method then it is equivalent to 13 mm SWE (7% of total) at a depth of 100 cm. This error is reduced to 5.6 mm SWE (3 % of total) for a two-layer model.
Resumo:
This letter has tested the canopy height profile (CHP) methodology as a way of effective leaf area index (LAIe) and vertical vegetation profile retrieval at a single-tree level. Waveform and discrete airborne LiDAR data from six swaths, as well as from the combined data of six swaths, were used to extract the LAIe of a single live Callitris glaucophylla tree. LAIe was extracted from raw waveform as an intermediate step in the CHP methodology, with two different vegetation-ground reflectance ratios. Discrete point LAIe estimates were derived from the gap probability using the following: 1) single ground returns and 2) all ground returns. LiDAR LAIe retrievals were subsequently compared to hemispherical photography estimates, yielding mean values within 7% of the latter, depending on the method used. The CHP of a single dead Callitris glaucophylla tree, representing the distribution of vegetation material, was verified with a field profile manually reconstructed from convergent photographs taken with a fixed-focal-length camera. A binwise comparison of the two profiles showed very high correlation between the data reaching R2 of 0.86 for the CHP from combined swaths. Using a study-area-adjusted reflectance ratio improved the correlation between the profiles, but only marginally in comparison to using an arbitrary ratio of 0.5 for the laser wavelength of 1550 nm.
Resumo:
We present a novel method for retrieving high-resolution, three-dimensional (3-D) nonprecipitating cloud fields in both overcast and broken-cloud situations. The method uses scanning cloud radar and multiwavelength zenith radiances to obtain gridded 3-D liquid water content (LWC) and effective radius (re) and 2-D column mean droplet number concentration (Nd). By using an adaption of the ensemble Kalman filter, radiances are used to constrain the optical properties of the clouds using a forward model that employs full 3-D radiative transfer while also providing full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from a challenging cumulus cloud field produced by a large-eddy simulation snapshot. Uncertainty due to measurement error in overhead clouds is estimated at 20% in LWC and 6% in re, but the true error can be greater due to uncertainties in the assumed droplet size distribution and radiative transfer. Over the entire domain, LWC and re are retrieved with average error 0.050.08 g m-3 and ~2 m, respectively, depending on the number of radiance channels used. The method is then evaluated using real data from the Atmospheric Radiation Measurement program Mobile Facility at the Azores. Two case studies are considered, one stratocumulus and one cumulus. Where available, the liquid water path retrieved directly above the observation site was found to be in good agreement with independent values obtained from microwave radiometer measurements, with an error of 20 g m-2.
Resumo:
Observations are presented of short-lived, highly structured bursts of rapid plasma flow observed with the EISCAT radar in the high latitude dayside ionosphere. It is shown that the properties of the bursts are consistent with ionospheric perturbations caused by impulsive, localized reconnection at the Earth's magnetopause, i.e. by flux transfer events.
Resumo:
A Canopy Height Profile (CHP) procedure presented in Harding et al. (2001) for large footprint LiDAR data was tested in a closed canopy environment as a way of extracting vertical foliage profiles from LiDAR raw-waveform. In this study, an adaptation of this method to small-footprint data has been shown, tested and validated in an Australian sparse canopy forest at plot- and site-level. Further, the methodology itself has been enhanced by implementing a dataset-adjusted reflectance ratio calculation according to Armston et al. (2013) in the processing chain, and tested against a fixed ratio of 0.5 estimated for the laser wavelength of 1550nm. As a by-product of the methodology, effective leaf area index (LAIe) estimates were derived and compared to hemispherical photography-derived values. To assess the influence of LiDAR aggregation area size on the estimates in a sparse canopy environment, LiDAR CHPs and LAIes were generated by aggregating waveforms to plot- and site-level footprints (plot/site-aggregated) as well as in 5m grids (grid-processed). LiDAR profiles were then compared to leaf biomass field profiles generated based on field tree measurements. The correlation between field and LiDAR profiles was very high, with a mean R2 of 0.75 at plot-level and 0.86 at site-level for 55 plots and the corresponding 11 sites. Gridding had almost no impact on the correlation between LiDAR and field profiles (only marginally improvement), nor did the dataset-adjusted reflectance ratio. However, gridding and the dataset-adjusted reflectance ratio were found to improve the correlation between raw-waveform LiDAR and hemispherical photography LAIe estimates, yielding the highest correlations of 0.61 at plot-level and of 0.83 at site-level. This proved the validity of the approach and superiority of dataset-adjusted reflectance ratio of Armston et al. (2013) over a fixed ratio of 0.5 for LAIe estimation, as well as showed the adequacy of small-footprint LiDAR data for LAIe estimation in discontinuous canopy forests.
Resumo:
This study has compared preliminary estimates of effective leaf area index (LAI) derived from fish-eye lens photographs to those estimated from airborne full-waveform small-footprint LiDAR data for a forest dataset in Australia. The full-waveform data was decomposed and optimized using a trust-region-reflective algorithm to extract denser point clouds. LAI LiDAR estimates were derived in two ways (1) from the probability of discrete pulses reaching the ground without being intercepted (point method) and (2) from raw waveform canopy height profile processing adapted to small-footprint laser altimetry (waveform method) accounting for reflectance ratio between vegetation and ground. The best results, that matched hemispherical photography estimates, were achieved for the waveform method with a study area-adjusted reflectance ratio of 0.4 (RMSE of 0.15 and 0.03 at plot and site level, respectively). The point method generally overestimated, whereas the waveform method with an arbitrary reflectance ratio of 0.5 underestimated the fish-eye lens LAI estimates.
Resumo:
Peak residential electricity demand takes place when people conduct simultaneous activities at specific times of the day. Social practices generate patterns of demand and can help understand why, where, with whom and when energy services are used at peak time. The aim of this work is to make use of recent UK time use and locational data to better understand: (i) how a set of component indices on synchronisation, variation, sharing and mobility indicate flexibility to shift demand; and (ii) the links between peoples activities and peaks in greenhouse gases intensities. The analysis is based on a recent UK time use dataset, providing 1 minute interval data from GPS devices and 10 minute data from diaries and questionnaires for 175 data days comprising 153 respondents. Findings show how greenhouse gases intensities and flexibility to shift activities vary throughout the day. Morning peaks are characterised by high levels of synchronisation, shared activities and occupancy, with low variation of activities. Evening peaks feature low synchronisation, and high spatial mobility variation of activities. From a network operator perspective, the results indicate that periods with lower flexibility may be prone to more significant local network loads due to the synchronization of electricity-demanding activities.
Resumo:
There is growing evidence of a substantial decline in pollinators within Europe and North America, most likely caused by multiple factors such as diseases, poor nutrition, habitat loss, insecticides, and environmental pollution. Diesel exhaust could be a contributing factor to this decline, since we found that diesel exhaust rapidly degrades floral volatiles, which honey bees require for flower recognition. In this study, we exposed eight of the most common floral volatiles to diesel exhaust in order to investigate whether it can affect volatile mediated plant-pollinator interaction. Exposure to diesel exhaust altered the blend of common flower volatiles significantly: myrcene was considerably reduced, -ocimene became undetectable, and -caryophyllene was transformed into its cis-isomer isocaryophyllene. Proboscis extension response (PER) assays showed that the alterations of the blend reduced the ability of honey bees to recognize it. The chemically reactive nitrogen oxides fraction of diesel exhaust gas was identified as capable of causing degradation of floral volatiles.
Resumo:
This paper presents an open-source canopy height prole (CHP) toolkit designed for processing small-footprint full-waveform LiDAR data to obtain the estimates of effective leaf area index (LAIe) and CHPs. The use of the toolkit is presented with a case study of LAIe estimation in discontinuous-canopy fruit plantations. The experiments are carried out in two study areas, namely, orange and almond plantations, with different percentages of canopy cover (48% and 40%, respectively). For comparison, two commonly used discrete-point LAIe estimation methods are also tested. The LiDAR LAIe values are rst computed for each of the sites and each method as a whole, providing apparent site-level LAIe, which disregards the discontinuity of the plantations canopies. Since the toolkit allows for the calculation of the study area LAIe at different spatial scales, between-tree-level clumpingcan be easily accounted for and is then used to illustrate the impact of the discontinuity of canopy cover on LAIe retrieval. The LiDAR LAIe estimates are therefore computed at smaller scales as a mean of LAIe in various grid-cell sizes, providing estimates of actual site-level LAIe. Subsequently, the LiDAR LAIe results are compared with theoretical models of apparent LAIe versus actual LAIe, based on known percent canopy cover in each site. The comparison of those models to LiDAR LAIe derived from the smallest grid-cell sizes against the estimates of LAIe for the whole site has shown that the LAIe estimates obtained from the CHP toolkit provided values that are closest to those of theoretical models.
Resumo:
Background: The chromosome 17q21.31 microdeletion syndrome is a novel genomic disorder that has originally been identified using high resolution genome analyses in patients with unexplained mental retardation. Aim: We report the molecular and/or clinical characterisation of 22 individuals with the 17q21.31 microdeletion syndrome. Results: We estimate the prevalence of the syndrome to be 1 in 16 000 and show that it is highly underdiagnosed. Extensive clinical examination reveals that developmental delay, hypotonia, facial dysmorphisms including a long face, a tubular or pear-shaped nose and a bulbous nasal tip, and a friendly/amiable behaviour are the most characteristic features. Other clinically important features include epilepsy, heart defects and kidney/urologic anomalies. Using high resolution oligonucleotide arrays we narrow the 17q21.31 critical region to a 424 kb genomic segment (chr17: 41046729-41470954, hg17) encompassing at least six genes, among which is the gene encoding microtubule associated protein tau (MAPT). Mutation screening of MAPT in 122 individuals with a phenotype suggestive of 17q21.31 deletion carriers, but who do not carry the recurrent deletion, failed to identify any disease associated variants. In five deletion carriers we identify a <500 bp rearrangement hotspot at the proximal breakpoint contained within an L2 LINE motif and show that in every case examined the parent originating the deletion carries a common 900 kb 17q21.31 inversion polymorphism, indicating that this inversion is a necessary factor for deletion to occur (p< 10(25)). Conclusion: Our data establish the 17q21.31 microdeletion syndrome as a clinically and molecularly well recognisable genomic disorder.
Resumo:
This paper presents a study on wavelets and their characteristics for the specific purpose of serving as a feature extraction tool for speaker verification (SV), considering a Radial Basis Function (RBF) classifier, which is a particular type of Artificial Neural Network (ANN). Examining characteristics such as support-size, frequency and phase responses, amongst others, we show how Discrete Wavelet Transforms (DWTs), particularly the ones which derive from Finite Impulse Response (FIR) filters, can be used to extract important features from a speech signal which are useful for SV. Lastly, an SV algorithm based on the concepts presented is described.