976 resultados para Dataset
Resumo:
This work addresses the challenging problem of unconstrained 3D human pose estimation (HPE) from a novel perspective. Existing approaches struggle to operate in realistic applications, mainly due to their scene-dependent priors, such as background segmentation and multi-camera network, which restrict their use in unconstrained environments. We therfore present a framework which applies action detection and 2D pose estimation techniques to infer 3D poses in an unconstrained video. Action detection offers spatiotemporal priors to 3D human pose estimation by both recognising and localising actions in space-time. Instead of holistic features, e.g. silhouettes, we leverage the flexibility of deformable part model to detect 2D body parts as a feature to estimate 3D poses. A new unconstrained pose dataset has been collected to justify the feasibility of our method, which demonstrated promising results, significantly outperforming the relevant state-of-the-arts. © 2013 IEEE.
Resumo:
Studies of Erebus volcano's active lava lake have shown that many of its observable properties (gas composition, surface motion and radiant heat output) exhibit cyclic behaviour with a period of ~10 min. We investigate the multi-year progression of the cycles in surface motion of the lake using an extended (but intermittent) dataset of thermal infrared images collected by the Mount Erebus Volcano Observatory between 2004 and 2011. Cycles with a period of ~5-18 min are found to be a persistent feature of the lake's behaviour and no obvious long-term change is observed despite variations in lake level and surface area. The times at which gas bubbles arrive at the lake's surface are found to be random with respect to the phase of the motion cycles, suggesting that the remarkable behaviour of the lake is governed by magma exchange rather than an intermittent flux of gases from the underlying magma reservoir. © 2014 The Authors.
Resumo:
We present a novel mixture of trees (MoT) graphical model for video segmentation. Each component in this mixture represents a tree structured temporal linkage between super-pixels from the first to the last frame of a video sequence. Our time-series model explicitly captures the uncertainty in temporal linkage between adjacent frames which improves segmentation accuracy. We provide a variational inference scheme for this model to estimate super-pixel labels and their confidences in nearly realtime. The efficacy of our approach is demonstrated via quantitative comparisons on the challenging SegTrack joint segmentation and tracking dataset [23].
Resumo:
Traditional approaches to upper body pose estimation using monocular vision rely on complex body models and a large variety of geometric constraints. We argue that this is not ideal and somewhat inelegant as it results in large processing burdens, and instead attempt to incorporate these constraints through priors obtained directly from training data. A prior distribution covering the probability of a human pose occurring is used to incorporate likely human poses. This distribution is obtained offline, by fitting a Gaussian mixture model to a large dataset of recorded human body poses, tracked using a Kinect sensor. We combine this prior information with a random walk transition model to obtain an upper body model, suitable for use within a recursive Bayesian filtering framework. Our model can be viewed as a mixture of discrete Ornstein-Uhlenbeck processes, in that states behave as random walks, but drift towards a set of typically observed poses. This model is combined with measurements of the human head and hand positions, using recursive Bayesian estimation to incorporate temporal information. Measurements are obtained using face detection and a simple skin colour hand detector, trained using the detected face. The suggested model is designed with analytical tractability in mind and we show that the pose tracking can be Rao-Blackwellised using the mixture Kalman filter, allowing for computational efficiency while still incorporating bio-mechanical properties of the upper body. In addition, the use of the proposed upper body model allows reliable three-dimensional pose estimates to be obtained indirectly for a number of joints that are often difficult to detect using traditional object recognition strategies. Comparisons with Kinect sensor results and the state of the art in 2D pose estimation highlight the efficacy of the proposed approach.
Resumo:
Automatic molecular classification of cancer based on DNA microarray has many advantages over conventional classification based on morphological appearance of the tumor. Using artificial neural networks is a general approach for automatic classification. In this paper, Direction-Basis-Function neuron and Priority-Ordered algorithm are applied to neural networks. And the leukemia gene expression dataset is used as an example to testify the classifier. The result of our method is compared to that of SVM. It shows that our method makes a better performance than SVM.
Resumo:
列表类型数据是生态研究中最为常见的数据形式。在分析列表类型数据特征及其与元数据关系,数据安全和共享策略等问题基础上,提出了生态研究列表类数据管理系统设计和开发方案。研究认为数据集的元数据不仅是对数据集实体的说明,而且一定程度上决定着数据集实体的内容和数量,以及数据集实体之间的内在联系,这种联系正是进行列表类型数据管理依据所在。
Resumo:
植物功能生态学研究不仅提供了植物生理生态学与生态系统生态学的连接,还为植物种群生活史对策研究提供了材料。Westoby 等 (2002) 提出了利用植物功能性状变量的主导维度来确定和量化植物生活史的生态适应策略。在他们所提出四个主导维度中,叶大小-小枝大小是研究相对较少的一维;其内部各组分的关系、对环境的响应,以及与其它重要维度的关系,目前的理解非常有限。 本研究以贡嘎山不同海拔不同功能群物种为研究对象,采用种间比较和系统发生独立性比较等研究方法,系统研究了植物的功能特征及其相关性在不同生境及不同功能群间的差异,旨在分析不同功能群物种的叶大小-小枝大小的成本和收益。其研究结果将有助于我们理解植物生活史对策的进化,进而理解物种共存和维持物种多样性的机制。主要研究结果如下: 1. 叶大小-小枝大小关系 小枝茎横截面积与单叶面积和总叶面积均呈异速生长关系,即总叶面积和单叶面积的增加比茎横截面积的增加速度快。但是,总叶面积和叶片干重的增加却基本上与小枝茎干重的增加等速。系统发生独立性比较研究的结果与此相一致。表明,在某一给定的茎投入时,至少大叶大枝物种不比小叶小枝物种在支撑叶面积和叶片干重方面具有优势。同时,在某一给定的小枝茎投入时,常绿阔叶物种比落叶阔叶物种支撑更少的叶面积。在茎干重与总叶面积的关系中,落叶复叶物种比落叶单叶物种具有更高的y轴截距,表明复叶物种比单叶物种在展叶面积方面更有效。复叶物种与单叶物种相比,通常具有较大的叶大小和小枝大小。 2. 叶大小-叶数量关系 叶大小与数量间在不同的叶片习性、不同的叶片形态以及不同的生境类型的物种间均存在稳定的负的等速生长关系,且这种关系在系统发生独立性比较时依然成立。然而,在某一给定的出叶强度 (单位小枝的叶数量) 时,常绿阔叶物种比落叶物种具有更小的叶面积。而在给定体积基础上的出叶强度时,落叶复叶物种的叶面积显著大于落叶单叶物种,且复叶物种比单叶物种具有更大的叶大小和更小的出叶强度。但是,叶大小与数量间的关系在不同的海拔间并没有显著的差异。 3. 小枝大小-总叶面积关系 在不同的生活型或不同的生境下,小枝上总叶面积与茎干重和小枝干重均呈正的异速生长关系,且斜率显著小于1.0,表明小枝上总叶面积的增加都不能赶上小枝及茎大小的增加。这种“收益递减”表明随着小枝干重的增加,光截取的收益递减。此外,叶面积比 (总叶面积与小枝干重的比值) 与单叶干重呈显著负相关关系,系统发生独立性比较的结果与此相一致。根据以上结果,可以推测,大叶的物种在质量较好的生境中出现,而群落内部小枝茎的寿命较长的物种可以拥有较大的叶片。 4. 叶片色素浓度-LMA关系 随着海拔的升高,阔叶木本植物和草本植物的叶片色素浓度减少,叶绿素a/b和类胡萝卜素/叶绿素比值以及比叶重 (LMA) 增加。然而,在草本植物中的色素浓度、色素比值和LMA的变化比阔叶木本植物的更明显。同时,LMA与叶片色素浓度呈负相关关系,但是在落叶物种中的LMA对色素浓度的影响比常绿阔叶物种更强烈。总之,草本植物的叶片特征对海拔梯度的变化似乎比木本植物更敏感,LMA对叶片色素的保护作用在落叶物种中比在常绿阔叶物种显得更重要。这些结果表明不同生活型物种可能采取不同的保护机制来降低叶绿体器官的损伤和增加他们的碳获取能力。 Studies on plant functional ecology not only bridge plant eco-physiology and ecosystem functioning, but also enrich plant population biology. As pointed out by Westoby et al (2002), plant life history strategies can be identified and quantified by four leading dimensions of variations in plant functional traits, i.e., seed size/output, leaf mass per area and leaf life span, plant height, and leaf size-twig size. Compared to the other dimensions, the cost/benefit of the leaf size-twig size spectrum has scarcely been analyzed in relation to environmental gradients and life form types, and the adaptive significance of this spectrum is not fully understood. In the present study, the relationships between functional traits of plant twigs are determined for the species with different life forms along an altitudinal gradient of Gongga Mountain with both cross-species analysis and evolutionary divergence analysis. The primary objective of this study is to examine the cost/benefit of leaf size-twig size in plants. The study results are supposed to provide insights into the understanding of the mechanism of species coexistences. The results are shown in the following. 1. The relationship between leaf size and twig size Twig cross-sectional area allometrically scaled with both individual leaf area and total leaf area supported by the twigs. However, the increase in total lamina mass/area was generally proportional to the increase in stem mass. These correlations between trait variations were significant in both interspecies analysis and phylogenetically independent comparison (PIC) analysis, which indicated that thick-twigged/large-leaved species, at least, do not have an advantage in supporting leaf/lamina area and lamina mass for the same twig stem investment than thin-twigged/ small-leaved species. Meanwhile, the evergreen broad-leaved species supported a smaller leaf area for the same twig stem investment in terms of both cross-sectional area and stem mass than the deciduous species. The deciduous compound-leaved species have a higher y-intercept in the scaling relationship of twig stem mass versus total leaf area than the deciduous simple-leaved species, indicating that compound-leaved species were more efficient in displaying leaf area. The compound-leaved species were larger in both leaf size and twig size than their counterpart in the present study. 2. The relationship between leaf size and leaf number Significantly negative and isometric scaling relationships between leaf size and leafing intensity (leaf number per twig mass or volume) were found to be consistently conserved across species independent of leaf habit, leaf form and habitat type. The negative correlations between leaf size and leafing intensity were also observed across correlated evolutionary divergences. However, leaf area was smaller in the evergreen broad-leaved species at a given leafing intensity than in the deciduous species. The deciduous compound-leaved deciduous species were higher in leaf area than deciduous simple-laved species at a given volume-based leafing intensity. Moreover, the compound-leaved deciduous species were larger in leaf size but smaller in leafing intensity than their simple counterparts. No significant difference was found in the scaling relationships between altitudes. 3. The relationship between twig size and total leaf area Leaf area was found to scale positively and allometrically with both stem and twig mass (stem mass plus leaf mass) with slopes significantly smaller than 1.0, independent of life form and habitat type, indicating that the increase in total leaf area fails to keep pace with increasing twig size and stem size. This ‘diminishing returns’ suggests that the benefit of light intercept decreased with increasing twig mass. Moreover, the leaf area ratio (the ratio of total leaf area to stem or twig mass) correlated negatively with individual leaf mass. The results of PIC were consistent with the correlations. According to the results, it is speculated that large-leaved species may be favored when habitat is good and when stem longevity are long within community. 4. The relationship between leaf pigment concentrations and leaf mass per area With increasing altitude, the concentrations of pigments decreased, but the ratios of chlorophyll a/b and carotenoid/chlorophyll, and LMA increased, in both the broad-leaved woody species and herbaceous species groups. However, the changes in the pigment concentrations, ratios and LMA were more profound in the herbaceous species than in the woody species. In addition, pigment concentrations were negatively correlated with LMA in each life form type and in the pooled dataset. However, the LMA effect on leaf pigment concentrations was more profound in the deciduous species than in the evergreen braode-leaved species. In general, herbaceous species seemed more sensitive to the increasing altitude compared to woody species, and LMA seemed to be a more important mechanism for protecting leaf pigments in deciduous species than in evergreen broad-leaved species. These results suggested that the species with different life forms may employ different protective mechanisms to decrease the chloroplast apparatus damage and increase their carbon gain.
Resumo:
We consider the Randall-Sundrum brane-world model with bulk-brane energy transfer where the Einstein-Hilbert action is modified by curvature correction terms: a four-dimensional scalar curvature from induced gravity on the brane, and a five-dimensional Gauss-Bonnet curvature term. It is remarkable that these curvature terms will not change the dynamics of the brane universe at low energy. Parameterizing the energy transfer and taking the dark radiation term into account, we find that the phantom divide of the equation of state of effective dark energy could be crossed, without the need of any new dark energy components. Fitting the two most reliable and robust SNIa datasets, the 182 Gold dataset and the Supernova Legacy Survey (SNLS), our model indeed has a small tendency of phantom divide crossing for the Gold dataset, but not for the SNLS dataset. Furthermore, combining the recent detection of the SDSS baryon acoustic oscillations peak (BAO) with lower matter density parameter prior, we find that the SNLS dataset also mildly favors phantom divide crossing.
Resumo:
As a recently developed and powerful classification tool, probabilistic neural network was used to distinguish cancer patients from healthy persons according to the levels of nucleosides in human urine. Two datasets (containing 32 and 50 patterns, respectively) were investigated and the total consistency rate obtained was 100% for dataset 1 and 94% for dataset 2. To evaluate the performance of probabilistic neural network, linear discriminant analysis and learning vector quantization network, were also applied to the classification problem. The results showed that the predictive ability of the probabilistic neural network is stronger than the others in this study. Moreover, the recognition rate for dataset 2 can achieve to 100% if combining, these three methods together, which indicated the promising potential of clinical diagnosis by combining different methods. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Over last two decades, numerous studies have used remotely sensed data from the Advanced Very High Resolution Radiometer (AVHRR) sensors to map land use and land cover at large spatial scales, but achieved only limited success. In this paper, we employed an approach that combines both AVHRR images and geophysical datasets (e.g. climate, elevation). Three geophysical datasets are used in this study: annual mean temperature, annual precipitation, and elevation. We first divide China into nine bio-climatic regions, using the long-term mean climate data. For each of nine regions, the three geophysical data layers are stacked together with AVHRR data and AVHRR-derived vegetation index (Normalized Difference Vegetation Index) data, and the resultant multi-source datasets were then analysed to generate land-cover maps for individual regions, using supervised classification algorithms. The nine land-cover maps for individual regions were assembled together for China. The existing land-cover dataset derived from Landsat Thematic Mapper (TM) images was used to assess the accuracy of the classification that is based on AVHRR and geophysical data. Accuracy of individual regions varies from 73% to 89%, with an overall accuracy of 81% for China. The results showed that the methodology used in this study is, in general, feasible for large-scale land-cover mapping in China.
Resumo:
With the digital all-sky imager (ASI) emergence in aurora research, millions of images are captured annually. However, only a fraction of which can be actually used. To address the problem incurred by low efficient manual processing, an integrated image analysis and retrieval system is developed. For precisely representing aurora image, macroscopic and microscopic features are combined to describe aurora texture. To reduce the feature dimensionality of the huge dataset, a modified local binary pattern (LBP) called ALBP is proposed to depict the microscopic texture, and scale-invariant Gabor and orientation-invariant Gabor are employed to extract the macroscopic texture. A physical property of aurora is inducted as region features to bridge the gap between the low-level visual features and high-level semantic description. The experiments results demonstrate that the ALBP method achieves high classification rate and low computational complexity. The retrieval simulation results show that the developed retrieval system is efficient for huge dataset. (c) 2010 Elsevier Inc. All rights reserved.
Resumo:
Mitochondrial genome sequence and structure analysis has become a powerful tool for studying molecular evolution and phylogenetic relationships. To understand the systematic status of Trichiurus japonicus in suborder Scombroidei, we determined the complete mitochondrial genome (mitogenome) sequence using the long-polymerase chain reaction (long-PCR) and shotgun sequencing method. The entire mitogenome is 16,796 by in length and has three unusual features, including (1) the absence of tRNA(Pro) gene, (2) the possibly nonfunctional light-strand replication origin (O-L) showing a shorter loop in secondary structure and no conserved motif (5'-GCCGG-3'), (3) two sets of the tandem repeats at the 5' and 3' ends of the control region. The three features seem common for Trichiurus mitogenomes, as we have confirmed them in other three T. japonicus individuals and in T nanhaiensis. Phylogenetic analysis does not support the monophyly of Trichiuridae, which is against the morphological result. T. japonicus is most closely related to those species of family Scombridae; they in turn have a sister relationship with Perciformes members including suborders Acanthuroidei, Caproidei, Notothenioidei, Zoarcoidei, Trachinoidei, and some species of Labroidei, based on the current dataset of complete mitogenome. T japonicus together with T. brevis, T lepturus and Aphanopus carbo form a clade distinct from Lepidopus caudatus in terms of the complete Cyt b sequences. T. japonicus mitogenome, as the first discovered complete mitogenome of Trichiuridae, should provide important information on both genomics and phylogenetics of Trichiuridae. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The complete mitochondrial (mt) genome sequence of Oratosquilla oratoria (Crustacea: Malacostraca: Stomatopoda) was determined; a circular molecule of 15,783 bp in length. The gene content and arrangement are consistent with the pancrustacean ground pattern. The mt control region of O. oratoria is characterized by no GA-block near the 3' end and different position of [TA(A)]n-blocks compared with other reported Stomatopoda species. The sequence of the second hairpin structure is relative conserved which suggests this region may be a synapomorphic character for the Stomatopoda. In addition, a relative large intergenic spacer (101 bp) with higher A + T content than that in control region was identified between the tRNA(Glu) and tRNA(Phe) genes. Phylogenetic analyses based on the current dataset of complete mt genomes strongly support the Stomatopoda is closely related to Euphausiacea. They in turn cluster with Penaeoidea and Caridea clades while other decapods form a separate group, which rejects the monophyly of Decapoda. This challenges the suitability of Stomatopoda as an outgroup of Decapoda in phylogenetic analyses. The basal position of Stomatopoda within Eumalacostraca according to the morphological characters is also questioned. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
In the present paper, correlation between the South China Sea summer monsoon (SCSSM) onset and heat content in the upper layer of the warm pool in the western Pacific Ocean is examined using the Scripps Institution of Oceanography dataset for the period of 1955-1998 and an approach to prediction the SCSSM onset is proposed. Correlation showes that there exists interdecadal variability of the SCSSM onset demarcated by 1970 with the largest correlation coefficient in the area west of the center of the warm pool rather than near its centers, implying certain effect from other factors involved besides ENSO. As the correlation is poor for the period before 1970, the heat content anomaly of the warm pool after 1970 is used to indicate early or late onset of the SCSSM beforehand. An ideal representative area (1A degrees x1A degrees) for the warm pool heat content was determined with its center at 3A degrees N/138A degrees E. The nearest TAO (TAO-Tropical Atmosphere Ocean-array) mooring to the center is at 2A degrees N/137A degrees E, and chosen to calculate the heat content for prediction. It is suggested that the TAO mooring at 2A degrees N/137A degrees E could be used to predict the SCSSM onset with the heat content in the upper layer, if the correlation between the SCSSM onset and the heat content of the warm pool runs like that of after 1970. On the other hand, if the situation does like the one before 1970, the representative station is determined at 13A degrees S/74A degrees E with relatively poor correlation, meaning that the warm pool in the western Pacific Ocean plays more important role in the SCSSM onset than the Indian Ocean.
Resumo:
The South China Sea (SCS) is one of the most active areas of internal waves. We undertook a program of physical oceanography in the northern South China Sea from June to July of 2009, and conducted a 1-day observation from 15:40 of June 24 to 16:40 of June 25 using a chain of instruments, including temperature sensors, pressure sensors and temperature-pressure meters at a site (117.5A degrees E, 21A degrees N) northeast of the Dongsha Islands. We measured fluctuating tidal and subtidal properties with the thermistor-chain and a ship-mounted Acoustic Doppler Current Profiler, and observed a large-amplitude nonlinear internal wave passing the site followed by a number of small ones. To further investigate this phenomenon, we collected the tidal constituents from the TPXO7.1 dataset to evaluate the tidal characteristics at and around the recording site, from which we knew that the amplitude of the nonlinear internal wave was about 120 m and the period about 20 min. The horizontal and vertical velocities induced by the soliton were approximately 2 m/s and 0.5 m/s, respectively. This soliton occurred 2-3 days after a spring tide.