903 resultados para Data-driven knowledge acquisition
Resumo:
The conformance of semantic technologies has to be systematically evaluated to measure and verify the real adherence of these technologies to the Semantic Web standards. Currente valuations of semantic technology conformance are not exhaustive enough and do not directly cover user requirements and use scenarios, which raises the need for a simple, extensible and parameterizable method to generate test data for such evaluations. To address this need, this paper presents a keyword-driven approach for generating ontology language conformance test data that can be used to evaluate semantic technologies, details the definition of a test suite for evaluating OWL DL conformance using this approach,and describes the use and extension of this test suite during the evaluation of some tools.
Resumo:
In the last decade, complex networks have widely been applied to the study of many natural and man-made systems, and to the extraction of meaningful information from the interaction structures created by genes and proteins. Nevertheless, less attention has been devoted to metabonomics, due to the lack of a natural network representation of spectral data. Here we define a technique for reconstructing networks from spectral data sets, where nodes represent spectral bins, and pairs of them are connected when their intensities follow a pattern associated with a disease. The structural analysis of the resulting network can then be used to feed standard data-mining algorithms, for instance for the classification of new (unlabeled) subjects. Furthermore, we show how the structure of the network is resilient to the presence of external additive noise, and how it can be used to extract relevant knowledge about the development of the disease.
Resumo:
A basic requirement of the data acquisition systems used in long pulse fusion experiments is the real time physical events detection in signals. Developing such applications is usually a complex task, so it is necessary to develop a set of hardware and software tools that simplify their implementation. This type of applications can be implemented in ITER using fast controllers. ITER is standardizing the architectures to be used for fast controller implementation. Until now the standards chosen are PXIe architectures (based on PCIe) for the hardware and EPICS middleware for the software. This work presents the methodology for implementing data acquisition and pre-processing using FPGA-based DAQ cards and how to integrate these in fast controllers using EPICS.
Resumo:
1. Canopies are complex multilayered structures comprising individual plant crowns exposing a multifaceted surface area to sunlight. Foliage arrangement and properties are the main mediators of canopy functions. The leaves act as light traps whose exposure to sunlight varies with time of the day, date and latitude in a trade-off between photosynthetic light harvesting and excessive or photoinhibitory light avoidance. To date, ecological research based upon leaf sampling has been limited by the available echnology, with which data acquisition becomes labour intensive and time-consuming, given the verwhelming number of leaves involved. 2. In the present study, our goal involved developing a tool capable of easuring a sufficient number of leaves to enable analysis of leaf populations, tree crowns and canopies.We specifically tested whether a cell phone working as a 3Dpointer could yield reliable, repeatable and valid leaf anglemeasurements with a simple gesture. We evaluated the accuracy of this method under controlled conditions, using a 3D digitizer, and we compared performance in the field with the methods commonly used. We presented an equation to estimate the potential proportion of the leaf exposed to direct sunlight (SAL) at any given time and compared the results with those obtained bymeans of a graphicalmethod. 3. We found a strong and highly significant correlation between the graphical methods and the equation presented. The calibration process showed a strong correlation between the results derived from the two methods with amean relative difference below 10%. Themean relative difference in calculation of instantaneous exposure was below 5%. Our device performed equally well in diverse locations, in which we characterized over 700 leaves in a single day. 4. The newmethod, involving the use of a cell phone, ismuchmore effective than the traditionalmethods or digitizers when the goal is to scale up from leaf position to performance of leaf populations, tree crowns or canopies. Our methodology constitutes an affordable and valuable tool within which to frame a wide range of ecological hypotheses and to support canopy modelling approaches.
Resumo:
EPICS (Experimental Physics and Industrial Control System) lies in a set of software tools and applications which provide a software infrastructure for building distributed data acquisition and control systems. Currently there is an increase in use of such systems in large Physics experiments like ITER, ESS, and FREIA. In these experiments, advanced data acquisition systems using FPGA-based technology like FlexRIO are more frequently been used. The particular case of ITER (International Thermonuclear Experimental Reactor), the instrumentation and control system is supported by CCS (CODAC Core System), based on RHEL (Red Hat Enterprise Linux) operating system, and by the plant design specifications in which every CCS element is defined either hardware, firmware or software. In this degree final project the methodology proposed in Implementation of Intelligent Data Acquisition Systems for Fusion Experiments using EPICS and FlexRIO Technology Sanz et al. [1] is used. The final objective is to provide a document describing the fulfilled process and the source code of the data acquisition system accomplished. The use of the proposed methodology leads to have two diferent stages. The first one consists of the hardware modelling with graphic design tools like LabVIEWFPGA which later will be implemented in the FlexRIO device. In the next stage the design cycle is completed creating an EPICS controller that manages the device using a generic device support layer named NDS (Nominal Device Support). This layer integrates the data acquisition system developed into CCS (Control, data access and communication Core System) as an EPICS interface to the system. The use of FlexRIO technology drives the use of LabVIEW and LabVIEW FPGA respectively. RESUMEN. EPICS (Experimental Physics and Industrial Control System) es un conjunto de herramientas software utilizadas para el desarrollo e implementación de sistemas de adquisición de datos y control distribuidos. Cada vez es más utilizado para entornos de experimentación física a gran escala como ITER, ESS y FREIA entre otros. En estos experimentos se están empezando a utilizar sistemas de adquisición de datos avanzados que usan tecnología basada en FPGA como FlexRIO. En el caso particular de ITER, el sistema de instrumentación y control adoptado se basa en el uso de la herramienta CCS (CODAC Core System) basado en el sistema operativo RHEL (Red Hat) y en las especificaciones del diseño del sistema de planta, en la cual define todos los elementos integrantes del CCS, tanto software como firmware y hardware. En este proyecto utiliza la metodología propuesta para la implementación de sistemas de adquisición de datos inteligente basada en EPICS y FlexRIO. Se desea generar una serie de ejemplos que cubran dicho ciclo de diseño completo y que serían propuestos como casos de uso de dichas tecnologías. Se proporcionará un documento en el que se describa el trabajo realizado así como el código fuente del sistema de adquisición. La metodología adoptada consta de dos etapas diferenciadas. En la primera de ellas se modela el hardware y se sintetiza en el dispositivo FlexRIO utilizando LabVIEW FPGA. Posteriormente se completa el ciclo de diseño creando un controlador EPICS que maneja cada dispositivo creado utilizando una capa software genérica de manejo de dispositivos que se denomina NDS (Nominal Device Support). Esta capa integra la solución en CCS realizando la interfaz con la capa EPICS del sistema. El uso de la tecnología FlexRIO conlleva el uso del lenguaje de programación y descripción hardware LabVIEW y LabVIEW FPGA respectivamente.
Resumo:
In this paper we want to point out, by means of a case study, the importance of incorporating some knowledge engineering techniques to the processes of software engineering. Precisely, we are referring to the knowledge eduction techniques. We know the difficulty of requirements acquisition and its importance to minimise the risks of a software project, both in the development phase and in the maintenance phase. To capture the functional requirements use cases are generally used. However, as we will show in this paper, this technique is insufficient when the problem domain knowledge is only in the "experts? mind". In this situation, the combination of the use case with eduction techniques, in every development phase, will let us to discover the correct requirements.
Resumo:
In the framework of the ITER Control Breakdown Structure (CBS), Plant System Instrumentation & Control (I&C) defines the hardware and software required to control one or more plant systems [1]. For diagnostics, most of the complex Plant System I&C are to be delivered by ITER Domestic Agencies (DAs). As an example for the DAs, ITER Organization (IO) has developed several use cases for diagnostics Plant System I&C that fully comply with guidelines presented in the Plant Control Design Handbook (PCDH) [2]. One such use case is for neutron diagnostics, specifically the Fission Chamber (FC), which is responsible for delivering time-resolved measurements of neutron source strength and fusion power to aid in assessing the functional performance of ITER [3]. ITER will deploy four Fission Chamber units, each consisting of three individual FC detectors. Two of these detectors contain Uranium 235 for Neutron detection, while a third "dummy" detector will provide gamma and noise detection. The neutron flux from each MFC is measured by the three methods: . Counting Mode: measures the number of individual pulses and their location in the record. Pulse parameters (threshold and width) are user configurable. . Campbelling Mode (Mean Square Voltage): measures the RMS deviation in signal amplitude from its average value. .Current Mode: integrates the signal amplitude over the measurement period
Resumo:
An important part of human intelligence, both historically and operationally, is our ability to communicate. We learn how to communicate, and maintain our communicative skills, in a society of communicators – a highly effective way to reach and maintain proficiency in this complex skill. Principles that might allow artificial agents to learn language this way are in completely known at present – the multi-dimensional nature of socio-communicative skills are beyond every machine learning framework so far proposed. Our work begins to address the challenge of proposing a way for observation-based machine learning of natural language and communication. Our framework can learn complex communicative skills with minimal up-front knowledge. The system learns by incrementally producing predictive models of causal relationships in observed data, guided by goal-inference and reasoning using forward-inverse models. We present results from two experiments where our S1 agent learns human communication by observing two humans interacting in a realtime TV-style interview, using multimodal communicative gesture and situated language to talk about recycling of various materials and objects. S1 can learn multimodal complex language and multimodal communicative acts, a vocabulary of 100 words forming natural sentences with relatively complex sentence structure, including manual deictic reference and anaphora. S1 is seeded only with high-level information about goals of the interviewer and interviewee, and a small ontology; no grammar or other information is provided to S1 a priori. The agent learns the pragmatics, semantics, and syntax of complex utterances spoken and gestures from scratch, by observing the humans compare and contrast the cost and pollution related to recycling aluminum cans, glass bottles, newspaper, plastic, and wood. After 20 hours of observation S1 can perform an unscripted TV interview with a human, in the same style, without making mistakes.
Resumo:
Current fusion devices consist of multiple diagnostics and hundreds or even thousands of signals. This situation forces on multiple occasions to use distributed data acquisition systems as the best approach. In this type of distributed systems, one of the most important issues is the synchronization between signals, so that it is possible to have a temporal correlation as accurate as possible between the acquired samples of all channels. In last decades, many fusion devices use different types of video cameras to provide inside views of the vessel during operations and to monitor plasma behavior. The synchronization between each video frame and the rest of the different signals acquired from any other diagnostics is essential in order to know correctly the plasma evolution, since it is possible to analyze jointly all the information having accurate knowledge of their temporal correlation. The developed system described in this paper allows timestamping image frames in a real-time acquisition and processing system using 1588 clock distribution. The system has been implemented using FPGA based devices together with a 1588 synchronized timing card (see Fig.1). The solution is based on a previous system [1] that allows image acquisition and real-time image processing based on PXIe technology. This architecture is fully compatible with the ITER Fast Controllers [2] and offers integration with EPICS to control and monitor the entire system. However, this set-up is not able to timestamp the frames acquired since the frame grabber module does not present any type of timing input (IRIG-B, GPS, PTP). To solve this lack, an IEEE1588 PXI timing device its used to provide an accurate way to synchronize distributed data acquisition systems using the Precision Time Protocol (PTP) IEEE 1588 2008 standard. This local timing device can be connected to a master clock device for global synchronization. The timing device has a buffer timestamp for each PXI trigger line and requires tha- a software application assigns each frame the corresponding timestamp. The previous action is critical and cannot be achieved if the frame rate is high. To solve this problem, it has been designed a solution that distributes the clock from the IEEE 1588 timing card to all FlexRIO devices [3]. This solution uses two PXI trigger lines that provide the capacity to assign timestamps to every frame acquired and register events by hardware in a deterministic way. The system provides a solution for timestamping frames to synchronize them with the rest of the different signals.
Resumo:
Las herramientas de configuración basadas en lenguajes de alto nivel como LabVIEW permiten el desarrollo de sistemas de adquisición de datos basados en hardware reconfigurable FPGA muy complejos en un breve periodo de tiempo. La estandarización del ciclo de diseño hardware/software y la utilización de herramientas como EPICS facilita su integración con la plataforma de adquisición y control ITER CODAC CORE SYSTEM (CCS) basada en Linux. En este proyecto se propondrá una metodología que simplificará el ciclo completo de integración de plataformas novedosas, como cRIO, en las que el funcionamiento del hardware de adquisición puede ser modificado por el usuario para que éste se amolde a sus requisitos específicos. El objetivo principal de este proyecto fin de master es realizar la integración de un sistema cRIO NI9159 y diferentes módulos de E/S analógica y digital en EPICS y en CODAC CORE SYSTEM (CCS). Este último consiste en un conjunto de herramientas software que simplifican la integración de los sistemas de instrumentación y control del experimento ITER. Para cumplir el objetivo se realizarán las siguientes tareas: • Desarrollo de un sistema de adquisición de datos basado en FPGA con la plataforma hardware CompactRIO. En esta tarea se realizará la configuración del sistema y la implementación en LabVIEW para FPGA del hardware necesario para comunicarse con los módulos: NI9205, NI9264, NI9401.NI9477, NI9426, NI9425 y NI9476 • Implementación de un driver software utilizando la metodología de AsynDriver para integración del cRIO con EPICS. Esta tarea requiere definir todos los records necesarios que exige EPICS y crear las interfaces adecuadas que permitirán comunicarse con el hardware. • Implementar la descripción del sistema cRIO y del driver EPICS en el sistema de descripción de plantas de ITER llamado SDD. Esto automatiza la creación de las aplicaciones de EPICS que se denominan IOCs. SUMMARY The configuration tools based in high-level programing languages like LabVIEW allows the development of high complex data acquisition systems based on reconfigurable hardware FPGA in a short time period. The standardization of the hardware/software design cycle and the use of tools like EPICS ease the integration with the data acquisition and control platform of ITER, the CODAC Core System based on Linux. In this project a methodology is proposed in order to simplify the full integration cycle of new platforms like CompactRIO (cRIO), in which the data acquisition functionality can be reconfigured by the user to fits its concrete requirements. The main objective of this MSc final project is to develop the integration of a cRIO NI-9159 and its different analog and digital Input/Output modules with EPICS in a CCS. The CCS consists of a set of software tools that simplifies the integration of instrumentation and control systems in the International Thermonuclear Reactor (ITER) experiment. To achieve such goal the following tasks are carried out: • Development of a DAQ system based on FPGA using the cRIO hardware platform. This task comprehends the configuration of the system and the implementation of the mandatory hardware to communicate to the I/O adapter modules NI9205, NI9264, NI9401, NI9477, NI9426, NI9425 y NI9476 using LabVIEW for FPGA. • Implementation of a software driver using the asynDriver methodology to integrate such cRIO system with EPICS. This task requires the definition of the necessary EPICS records and the creation of the appropriate interfaces that allow the communication with the hardware. • Develop the cRIO system’s description and the EPICS driver in the ITER plant description tool named SDD. This development will automate the creation of EPICS applications, called IOCs.
Resumo:
The new antigen receptor (NAR) gene in the nurse shark diversifies extensively by somatic hypermutation. It is not known, however, whether NAR somatic hypermutation generates the primary repertoire (like in the sheep) or rather is used in antigen-driven immune responses. To address this issue, the sequences of NAR transmembrane (Tm) and secretory (Sec) forms, presumed to represent the primary and secondary repertoires, respectively, were examined from the peripheral blood lymphocytes of three adult nurse sharks. More than 40% of the Sec clones but fewer than 11% of Tm clones contained five mutations or more. Furthermore, more than 75% of the Tm clones had few or no mutations. Mutations in the Sec clones occurred mostly in the complementarity-determining regions (CDR) with a significant bias toward replacement substitutions in CDR1; in Tm clones there was no significant bias toward replacements and only a low level of targeting to the CDRs. Unlike the Tm clones where the replacement mutational pattern was similar to that seen for synonymous changes, Sec replacements displayed a distinct pattern of mutations. The types of mutations in NAR were similar to those found in mouse Ig genes rather than to the unusual pattern reported for shark and Xenopus Ig. Finally, an oligoclonal family of Sec clones revealed a striking trend toward acquisition of glutamic/aspartic acid, suggesting some degree of selection. These data strongly suggest that hypermutation of NAR does not generate the repertoire, but instead is involved in antigen-driven immune responses.
Resumo:
We introduce a method of functionally classifying genes by using gene expression data from DNA microarray hybridization experiments. The method is based on the theory of support vector machines (SVMs). SVMs are considered a supervised computer learning method because they exploit prior knowledge of gene function to identify unknown genes of similar function from expression data. SVMs avoid several problems associated with unsupervised clustering methods, such as hierarchical clustering and self-organizing maps. SVMs have many mathematical features that make them attractive for gene expression analysis, including their flexibility in choosing a similarity function, sparseness of solution when dealing with large data sets, the ability to handle large feature spaces, and the ability to identify outliers. We test several SVMs that use different similarity metrics, as well as some other supervised learning methods, and find that the SVMs best identify sets of genes with a common function using expression data. Finally, we use SVMs to predict functional roles for uncharacterized yeast ORFs based on their expression data.
Resumo:
Objectives To explore how general practitioners have accessed and evaluated evidence from trials on the use of statin lipid lowering drugs and incorporated this evidence into their practice. To draw out the practical implications of this study for strategies to integrate clinical evidence into general medical practice.
Resumo:
Nowadays, data mining is based on low-level specications of the employed techniques typically bounded to a specic analysis platform. Therefore, data mining lacks a modelling architecture that allows analysts to consider it as a truly software-engineering process. Here, we propose a model-driven approach based on (i) a conceptual modelling framework for data mining, and (ii) a set of model transformations to automatically generate both the data under analysis (via data-warehousing technology) and the analysis models for data mining (tailored to a specic platform). Thus, analysts can concentrate on the analysis problem via conceptual data-mining models instead of low-level programming tasks related to the underlying-platform technical details. These tasks are now entrusted to the model-transformations scaffolding.
Resumo:
Business Intelligence (BI) applications have been gradually ported to the Web in search of a global platform for the consumption and publication of data and services. On the Internet, apart from techniques for data/knowledge management, BI Web applications need interfaces with a high level of interoperability (similar to the traditional desktop interfaces) for the visualisation of data/knowledge. In some cases, this has been provided by Rich Internet Applications (RIA). The development of these BI RIAs is a process traditionally performed manually and, given the complexity of the final application, it is a process which might be prone to errors. The application of model-driven engineering techniques can reduce the cost of development and maintenance (in terms of time and resources) of these applications, as they demonstrated by other types of Web applications. In the light of these issues, the paper introduces the Sm4RIA-B methodology, i.e., a model-driven methodology for the development of RIA as BI Web applications. In order to overcome the limitations of RIA regarding knowledge management from the Web, this paper also presents a new RIA platform for BI, called RI@BI, which extends the functionalities of traditional RIAs by means of Semantic Web technologies and B2B techniques. Finally, we evaluate the whole approach on a case study—the development of a social network site for an enterprise project manager.