901 resultados para Data dissemination and sharing
Resumo:
Big data are reshaping the way we interact with technology, thus fostering new applications to increase the safety-assessment of foods. An extraordinary amount of information is analysed using machine learning approaches aimed at detecting the existence or predicting the likelihood of future risks. Food business operators have to share the results of these analyses when applying to place on the market regulated products, whereas agri-food safety agencies (including the European Food Safety Authority) are exploring new avenues to increase the accuracy of their evaluations by processing Big data. Such an informational endowment brings with it opportunities and risks correlated to the extraction of meaningful inferences from data. However, conflicting interests and tensions among the involved entities - the industry, food safety agencies, and consumers - hinder the finding of shared methods to steer the processing of Big data in a sound, transparent and trustworthy way. A recent reform in the EU sectoral legislation, the lack of trust and the presence of a considerable number of stakeholders highlight the need of ethical contributions aimed at steering the development and the deployment of Big data applications. Moreover, Artificial Intelligence guidelines and charters published by European Union institutions and Member States have to be discussed in light of applied contexts, including the one at stake. This thesis aims to contribute to these goals by discussing what principles should be put forward when processing Big data in the context of agri-food safety-risk assessment. The research focuses on two interviewed topics - data ownership and data governance - by evaluating how the regulatory framework addresses the challenges raised by Big data analysis in these domains. The outcome of the project is a tentative Roadmap aimed to identify the principles to be observed when processing Big data in this domain and their possible implementations.
Resumo:
La presente tesi si propone di trattare il soggetto della screendance, giovane disciplina in continua definizione nata combinando cinema e coreografia, da una prospettiva alternativa, coerente con le ultime trasformazioni sociali. La ricerca, suddivisa in quattro parti, inizia da una ricognizione critica sulla terminologia utilizzata per indicare la screendance nel suo sviluppo storico in Europa e in Cina durante il XX secolo. Adoperando una metodologia basata sugli strumenti della storiografia comparativa, vengono utilizzati come chiavi di lettura i due concetti taoisti di xiang o visione e xing o forma, l’uno riferito al contesto culturale, storico e artistico di una data società umana in un dato periodo storico, e l’altro alludente alle forme artistiche specifiche definite da quei principi. Nel focalizzarsi sul confronto tra i differenti sviluppi della screendance nel corso del XX secolo in Europa e in Cina, nella seconda parte, la tesi affronta una comparazione diacronica delle trasformazioni di xiang delle due aree geografiche, insieme a una comparazione sincronica delle xing, rendendo più evidenti analogie e divergenze di numerosi case studies occidentali e cinesi. Uno sguardo sul panorama europeo, attento alle differenze nella disseminazione della screendance attraverso i festival in Gran Bretagna, Francia, Belgio e Italia, costituisce il focus della terza parte. Con la quarta ed ultima parte, la tesi riserva ampio spazio alla disamina della situazione contemporanea della screendance, seguendone la diffusione negli ultimi quattro decenni attraverso i festival e, più recentemente, i nuovi canali social di creazione e condivisione di contenuti video, e prospettando un futuro in cui la realtà della screendance europea e quella cinese potranno confrontare le proprie identità culturali. Il ricco apparato documentario include un elenco dei festival di screendance europei e cinesi, e una serie di interviste inedite ai maggiori operatori e professionisti del settore, italiani ed europei.
Resumo:
Clinical and omics data are a promising field of application for machine learning techniques even though these methods are not yet systematically adopted in healthcare institutions. Despite artificial intelligence has proved successful in terms of prediction of pathologies or identification of their causes, the systematic adoption of these techniques still presents challenging issues due to the peculiarities of the analysed data. The aim of this thesis is to apply machine learning algorithms to both clinical and omics data sets in order to predict a patient's state of health and get better insights on the possible causes of the analysed diseases. In doing so, many of the arising issues when working with medical data will be discussed while possible solutions will be proposed to make machine learning provide feasible results and possibly become an effective and reliable support tool for healthcare systems.
Resumo:
In this thesis we discuss in what ways computational logic (CL) and data science (DS) can jointly contribute to the management of knowledge within the scope of modern and future artificial intelligence (AI), and how technically-sound software technologies can be realised along the path. An agent-oriented mindset permeates the whole discussion, by stressing pivotal role of autonomous agents in exploiting both means to reach higher degrees of intelligence. Accordingly, the goals of this thesis are manifold. First, we elicit the analogies and differences among CL and DS, hence looking for possible synergies and complementarities along 4 major knowledge-related dimensions, namely representation, acquisition (a.k.a. learning), inference (a.k.a. reasoning), and explanation. In this regard, we propose a conceptual framework through which bridges these disciplines can be described and designed. We then survey the current state of the art of AI technologies, w.r.t. their capability to support bridging CL and DS in practice. After detecting lacks and opportunities, we propose the notion of logic ecosystem as the new conceptual, architectural, and technological solution supporting the incremental integration of symbolic and sub-symbolic AI. Finally, we discuss how our notion of logic ecosys- tem can be reified into actual software technology and extended towards many DS-related directions.
Resumo:
The internet and digital technologies revolutionized the economy. Regulating the digital market has become a priority for the European Union. While promoting innovation and development, EU institutions must assure that the digital market maintains a competitive structure. Among the numerous elements characterizing the digital sector, users’ data are particularly important. Digital services are centered around personal data, the accumulation of which contributed to the centralization of market power in the hands of a few large providers. As a result, data-driven mergers and data-related abuses gained a central role for the purposes of EU antitrust enforcement. In light of these considerations, this work aims at assessing whether EU competition law is well-suited to address data-driven mergers and data-related abuses of dominance. These conducts are of crucial importance to the maintenance of competition in the digital sector, insofar as the accumulation of users’ data constitutes a fundamental competitive advantage. To begin with, part 1 addresses the specific features of the digital market and their impact on the definition of the relevant market and the assessment of dominance by antitrust authorities. Secondly, part 2 analyzes the EU’s case law on data-driven mergers to verify if merger control is well-suited to address these concentrations. Thirdly, part 3 discusses abuses of dominance in the phase of data collection and the legal frameworks applicable to these conducts. Fourthly, part 4 focuses on access to “essential” datasets and the indirect effects of anticompetitive conducts on rivals’ ability to access users’ information. Finally, Part 5 discusses differential pricing practices implemented online and based on personal data. As it will be assessed, the combination of an efficient competition law enforcement and the auspicial adoption of a specific regulation seems to be the best solution to face the challenges raised by “data-related dominance”.
Resumo:
This dissertation proposes an analysis of the governance of the European scientific research, focusing on the emergence of the Open Science paradigm: a new way of doing science, oriented towards the openness of every phase of the scientific research process, able to take full advantage of the digital ICTs. The emergence of this paradigm is relatively recent, but in the last years it has become increasingly relevant. The European institutions expressed a clear intention to embrace the Open Science paradigm (eg., think about the European Open Science Cloud, EOSC; or the establishment of the Horizon Europe programme). This dissertation provides a conceptual framework for the multiple interventions of the European institutions in the field of Open Science, addressing the major legal challenges of its implementation. The study investigates the notion of Open Science, proposing a definition that takes into account all its dimensions related to the human and fundamental rights framework in which Open Science is grounded. The inquiry addresses the legal challenges related to the openness of research data, in light of the European Open Data framework and the impact of the GDPR on the context of Open Science. The last part of the study is devoted to the infrastructural dimension of the Open Science paradigm, exploring the e-infrastructures. The focus is on a specific type of computational infrastructure: the High Performance Computing (HPC) facility. The adoption of HPC for research is analysed from the European perspective, investigating the EuroHPC project, and the local perspective, proposing the case study of the HPC facility of the University of Luxembourg, the ULHPC. This dissertation intends to underline the relevance of the legal coordination approach, between all actors and phases of the process, in order to develop and implement the Open Science paradigm, adhering to the underlying human and fundamental rights.
Resumo:
The term Artificial intelligence acquired a lot of baggage since its introduction and in its current incarnation is synonymous with Deep Learning. The sudden availability of data and computing resources has opened the gates to myriads of applications. Not all are created equal though, and problems might arise especially for fields not closely related to the tasks that pertain tech companies that spearheaded DL. The perspective of practitioners seems to be changing, however. Human-Centric AI emerged in the last few years as a new way of thinking DL and AI applications from the ground up, with a special attention at their relationship with humans. The goal is designing a system that can gracefully integrate in already established workflows, as in many real-world scenarios AI may not be good enough to completely replace its humans. Often this replacement may even be unneeded or undesirable. Another important perspective comes from, Andrew Ng, a DL pioneer, who recently started shifting the focus of development from “better models” towards better, and smaller, data. He defined his approach Data-Centric AI. Without downplaying the importance of pushing the state of the art in DL, we must recognize that if the goal is creating a tool for humans to use, more raw performance may not align with more utility for the final user. A Human-Centric approach is compatible with a Data-Centric one, and we find that the two overlap nicely when human expertise is used as the driving force behind data quality. This thesis documents a series of case-studies where these approaches were employed, to different extents, to guide the design and implementation of intelligent systems. We found human expertise proved crucial in improving datasets and models. The last chapter includes a slight deviation, with studies on the pandemic, still preserving the human and data centric perspective.
Resumo:
The thesis represents the conclusive outcome of the European Joint Doctorate programmein Law, Science & Technology funded by the European Commission with the instrument Marie Skłodowska-Curie Innovative Training Networks actions inside of the H2020, grantagreement n. 814177. The tension between data protection and privacy from one side, and the need of granting further uses of processed personal datails is investigated, drawing the lines of the technological development of the de-anonymization/re-identification risk with an explorative survey. After acknowledging its span, it is questioned whether a certain degree of anonymity can still be granted focusing on a double perspective: an objective and a subjective perspective. The objective perspective focuses on the data processing models per se, while the subjective perspective investigates whether the distribution of roles and responsibilities among stakeholders can ensure data anonymity.
Resumo:
This thesis investigates the legal, ethical, technical, and psychological issues of general data processing and artificial intelligence practices and the explainability of AI systems. It consists of two main parts. In the initial section, we provide a comprehensive overview of the big data processing ecosystem and the main challenges we face today. We then evaluate the GDPR’s data privacy framework in the European Union. The Trustworthy AI Framework proposed by the EU’s High-Level Expert Group on AI (AI HLEG) is examined in detail. The ethical principles for the foundation and realization of Trustworthy AI are analyzed along with the assessment list prepared by the AI HLEG. Then, we list the main big data challenges the European researchers and institutions identified and provide a literature review on the technical and organizational measures to address these challenges. A quantitative analysis is conducted on the identified big data challenges and the measures to address them, which leads to practical recommendations for better data processing and AI practices in the EU. In the subsequent part, we concentrate on the explainability of AI systems. We clarify the terminology and list the goals aimed at the explainability of AI systems. We identify the reasons for the explainability-accuracy trade-off and how we can address it. We conduct a comparative cognitive analysis between human reasoning and machine-generated explanations with the aim of understanding how explainable AI can contribute to human reasoning. We then focus on the technical and legal responses to remedy the explainability problem. In this part, GDPR’s right to explanation framework and safeguards are analyzed in-depth with their contribution to the realization of Trustworthy AI. Then, we analyze the explanation techniques applicable at different stages of machine learning and propose several recommendations in chronological order to develop GDPR-compliant and Trustworthy XAI systems.
Resumo:
In this thesis, we investigate the role of applied physics in epidemiological surveillance through the application of mathematical models, network science and machine learning. The spread of a communicable disease depends on many biological, social, and health factors. The large masses of data available make it possible, on the one hand, to monitor the evolution and spread of pathogenic organisms; on the other hand, to study the behavior of people, their opinions and habits. Presented here are three lines of research in which an attempt was made to solve real epidemiological problems through data analysis and the use of statistical and mathematical models. In Chapter 1, we applied language-inspired Deep Learning models to transform influenza protein sequences into vectors encoding their information content. We then attempted to reconstruct the antigenic properties of different viral strains using regression models and to identify the mutations responsible for vaccine escape. In Chapter 2, we constructed a compartmental model to describe the spread of a bacterium within a hospital ward. The model was informed and validated on time series of clinical measurements, and a sensitivity analysis was used to assess the impact of different control measures. Finally (Chapter 3) we reconstructed the network of retweets among COVID-19 themed Twitter users in the early months of the SARS-CoV-2 pandemic. By means of community detection algorithms and centrality measures, we characterized users’ attention shifts in the network, showing that scientific communities, initially the most retweeted, lost influence over time to national political communities. In the Conclusion, we highlighted the importance of the work done in light of the main contemporary challenges for epidemiological surveillance. In particular, we present reflections on the importance of nowcasting and forecasting, the relationship between data and scientific research, and the need to unite the different scales of epidemiological surveillance.
Resumo:
El Niño South Oscillation (ENSO) is one climatic phenomenon related to the inter-annual variability of global meteorological patterns influencing sea surface temperature and rainfall variability. It influences human health indirectly through extreme temperature and moisture conditions that may accelerate the spread of some vector-borne viral diseases, like dengue fever (DF). This work examines the spatial distribution of association between ENSO and DF in the countries of the Americas during 1995-2004, which includes the 1997-1998 El Niño, one of the most important climatic events of 20(th) century. Data regarding the South Oscillation index (SOI), indicating El Niño-La Niña activity, were obtained from Australian Bureau of Meteorology. The annual DF incidence (AIy) by country was computed using Pan-American Health Association data. SOI and AIy values were standardised as deviations from the mean and plotted in bars-line graphics. The regression coefficient values between SOI and AIy (rSOI,AI) were calculated and spatially interpolated by an inverse distance weighted algorithm. The results indicate that among the five years registering high number of cases (1998, 2002, 2001, 2003 and 1997), four had El Niño activity. In the southern hemisphere, the annual spatial weighted mean centre of epidemics moved southward, from 6° 31' S in 1995 to 21° 12' S in 1999 and the rSOI,AI values were negative in Cuba, Belize, Guyana and Costa Rica, indicating a synchrony between higher DF incidence rates and a higher El Niño activity. The rSOI,AI map allows visualisation of a graded surface with higher values of ENSO-DF associations for Mexico, Central America, northern Caribbean islands and the extreme north-northwest of South America.
Resumo:
Primary X-ray spectra were measured in the range of 80-150kV in order to validate a computer program based on a semiempirical model. The ratio between the characteristic and total air Kerma was considered to compare computed results and experimental data. Results show that the experimental spectra have higher first HVL and mean energy than the calculated ones. The ratios between the characteristic and total air Kerma for calculated spectra are in good agreement with experimental results for all filtrations used.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Association between neuromuscular tests and kumite performance on the Brazilian Karate National Team
Resumo:
The aim of this study was to verify the relationship of strength and power with performance on an international level karate team during official kumite simulations. Fourteen male black belt karate athletes were submitted to anthropometric data collection and then performed the following tests on two different days: vertical jump test, bench press and squat maximum dynamic strength (1RM) tests. We also tested power production for both exercises at 30 and 60% 1RM and performed a kumite match simulation. Blood samples were obtained at rest and immediately after the kumite matches to measure blood lactate concentration. Karate players were separated by performance (winners vs. defeated) on the kumite matches. We found no significant differences between winners and defeated for strength, vertical jump height, anthropometric data and blood lactate concentration. Interestingly, winners were more powerful in the bench press and squat exercises at 30% 1RM. Maximum strength was correlated with absolute (30% 1RM r = 0.92; 60% 1RM r = 0.63) and relative power (30% 1RM r = 0.74; 60% 1RM r = 0.11, p > 0.05) for the bench press exercise. We concluded that international level karate players' kumite match performance are influenced by higher levels of upper and lower limbs power production.
Resumo:
Information and knowledge have been cited for two decades as competitive advantage tools. Recently, the use of them is discussed in promotion of the innovation. The premise indicates that human interaction, information sharing and knowledge creation are vital for the success of organizations that need to learn and innovate all the time. This paper has the intention to point contributions from a dynamic environment of acquisition, dissemination and the use of information to the subsequent knowledge creation and the formation of innovation teams.