833 resultados para DYNAMIC MECHANICAL-PROPERTIES
Resumo:
In recent years, many tidal turbine projects have been developed using composites blades. Tidal turbine blades are subject to ocean forces and sea water aggressions, and the reliability of these components is crucial to the profitability of ocean energy recovery systems. The majority of tidal turbine developers have preferred carbon/epoxy blades, so there is a need to understand how prolonged immersion in the ocean affects these composites. In this study the long term behaviour of different carbon/epoxy composites has been studied using accelerated ageing tests. A significant reduction of composite strengths has been observed after saturation of water in the material. For longer immersions only small further changes in these properties occur. No significant changes have been observed for moduli nor for composite toughness. The effect of sea water ageing on damage thresholds and kinetics has been studied and modelled. After saturation, the damage threshold is modified while kinetics of damage development remain the same.
Resumo:
Abstract. Currently, thermal energy generation through coal combustion produces ash particles which cause serious environmental problems and which are known as Fly Ash (FA). FA main components are oxides of silicon, aluminum, iron, calcium and magnesium in addition, toxic metals such as arsenic and cobalt. The use of fly ash as a cement replacement material increases long term strength and durability of concrete. In this work, samples were prepared by replacing cement by ground fly ash in 10, 20 and 30% by weight. The characterization of raw materials and microstructure was obtained by Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The final results showed that the grinding process significantly improves the mechanical properties of all samples when compared replacing a mortar made with cement by ground fly ash and the reference samples without added fly ash. The beneficial effect of the ground fly ash can increase the use of this product in precast concrete industry
Resumo:
New nanocomposites based on polyethylene have been prepared by in situ polymerization of ethylene in presence of mesoporous MCM-41. The polymerization reactions were performed using a zirconocene catalyst either under homogenous conditions or supported onto mesoporous MCM-41 particles, which are synthesized and decorated post-synthesis with two silanes before polymerization in order to promote an enhanced interfacial adhesion. The existence of polyethylene chains able to crystallize within the mesoporous channels in the resulting nanocomposites is figured out from the small endothermic process, located at around 80 C, on heating calorimetric experiments, in addition to the main melting endotherm. These results indicate that polyethylene macrochains can grow up during polymerization either outside or inside the MCM-41 channels, these keeping their regular hexagonal arrangements. Mechanical response is observed to be dependent on the content in mesoporous MCM-41 and on the crystalline features of polyethylene. Accordingly, stiffness increases and deformability decreases in the nanocomposites as much as MCM-41 content is enlarged and polyethylene amount within channels is raised. Ultimate mechanical performance improves with MCM-41 incorporation without varying the final processing temperature.
Resumo:
La0.6Sr0.4M0.1Fe0.9O3-δ (M: Co, Ni and Cu) perovskite nanostructures were synthesized using low frequency ultrasound assisted synthesis technique and effect of substitution of Fe by Co, Ni and Cu on crystal structure and mechanical properties in La0.6Sr0.4FeO3-δ perovskite were studied. The HRTEM and Rietveld refinement analyses revealed the uniform equi-axial shape of the obtained nanostructures with the existence of La0.6Sr0.4M0.1Fe0.9O3−δ with mixed rhombohedral and orthorhombic structures. Substitution of Cu decreases the melting point of La0.6Sr0.4FeO3-δ. The results of mechanical characterizations show that La0.6Sr0.4Co0.1Fe0.9O3−δ and La0.6Sr0.4Ni0.1Fe0.9O3−δ have ferroelastic behavior and comparable elastic moduli, however, subtitution of Ni shows higher hardness and lower fracture toughness than Co in Bsite doping
Resumo:
Structural characteristics of combustion synthesized, calcined and densified pure and doped nanoceria with tri-valent cations of Er, Y, Gd, Sm and Nd were analyzed by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). The results showed that the as-synthesized and calcined nanopowders were mesoporous and calculated lattice parameters were close to theoretical ion-packing model. The effect of dopants on elastic modulus, microhardness and fracture toughness of sintered pure and doped ceria were investigated. It was observed that tri-valent cation dopants increased the hardness of the ceria, whereas the fracture toughness and elastic modulus were decreased.
Resumo:
In this work results for the flexural strength and the thermal properties of interpenetrated graphite preforms infiltrated with Al-12wt%Si are discussed and compared to those for packed graphite particles. To make this comparison relevant, graphite particles of four sizes in the range 15–124 μm, were obtained by grinding the graphite preform. Effects of the pressure applied to infiltrate the liquid alloy on composite properties were investigated. In spite of the largely different reinforcement volume fractions (90% in volume in the preform and around 50% in particle compacts) most properties are similar. Only the Coefficient of Thermal Expansion is 50% smaller in the preform composites. Thermal conductivity of the preform composites (slightly below 100 W/m K), may be increased by reducing the graphite content, alloying, or increasing the infiltration pressure. The strength of particle composites follows Griffith criterion if the defect size is identified with the particle diameter. On the other hand, the composites strength remains increasing up to unusually high values of the infiltration pressure. This is consistent with the drainage curves measured in this work. Mg and Ti additions are those that produce the most significant improvements in performance. Although extensive development work remains to be done, it may be concluded that both mechanical and thermal properties make these materials suitable for the fabrication of piston engines.
Resumo:
In this project we developed conductive thermoplastic resins by adding varying amounts of three different carbon fillers: carbon black (CB), synthetic graphite (SG) and multi–walled carbon nanotubes (CNT) to a polypropylene matrix for application as fuel cell bipolar plates. This component of fuel cells provides mechanical support to the stack, circulates the gases that participate in the electrochemical reaction within the fuel cell and allows for removal of the excess heat from the system. The materials fabricated in this work were tested to determine their mechanical and thermal properties. These materials were produced by adding varying amounts of single carbon fillers to a polypropylene matrix (2.5 to 15 wt.% Ketjenblack EC-600 JD carbon black, 10 to 80 wt.% Asbury Carbons’ Thermocarb TC-300 synthetic graphite, and 2.5 to 15 wt.% of Hyperion Catalysis International’s FIBRILTM multi-walled carbon nanotubes) In addition, composite materials containing combinations of these three fillers were produced. The thermal conductivity results showed an increase in both through–plane and in–plane thermal conductivities, with the largest increase observed for synthetic graphite. The Department of Energy (DOE) had previously set a thermal conductivity goal of 20 W/m·K, which was surpassed by formulations containing 75 wt.% and 80 wt.% SG, yielding in–plane thermal conductivity values of 24.4 W/m·K and 33.6 W/m·K, respectively. In addition, composites containing 2.5 wt.% CB, 65 wt.% SG, and 6 wt.% CNT in PP had an in–plane thermal conductivity of 37 W/m·K. Flexural and tensile tests were conducted. All composite formulations exceeded the flexural strength target of 25 MPa set by DOE. The tensile and flexural modulus of the composites increased with higher concentration of carbon fillers. Carbon black and synthetic graphite caused a decrease in the tensile and flexural strengths of the composites. However, carbon nanotubes increased the composite tensile and flexural strengths. Mathematical models were applied to estimate through–plane and in–plane thermal conductivities of single and multiple filler formulations, and tensile modulus of single–filler formulations. For thermal conductivity, Nielsen’s model yielded accurate thermal conductivity values when compared to experimental results obtained through the Flash method. For prediction of tensile modulus Nielsen’s model yielded the smallest error between the predicted and experimental values. The second part of this project consisted of the development of a curriculum in Fuel Cell and Hydrogen Technologies to address different educational barriers identified by the Department of Energy. By the creation of new courses and enterprise programs in the areas of fuel cells and the use of hydrogen as an energy carrier, we introduced engineering students to the new technologies, policies and challenges present with this alternative energy. Feedback provided by students participating in these courses and enterprise programs indicate positive acceptance of the different educational tools. Results obtained from a survey applied to students after participating in these courses showed an increase in the knowledge and awareness of energy fundamentals, which indicates the modules developed in this project are effective in introducing students to alternative energy sources.
Resumo:
Altough nowadays DMTA is one of the most used techniques to characterize polymers thermo-mechanical behaviour, it is only effective for small amplitude oscillatory tests and limited to a single frequency analysis (linear regime). In this thesis work a Fourier transform based experimental system has proven to give hint on structural and chemical changes in specimens during large amplitude oscillatory tests exploiting multi frequency spectral analysis turning out in a more sensitive tool than classical linear approach. The test campaign has been focused on three test typologies: Strain sweep tests, Damage investigation and temperature sweep tests.
Resumo:
Paraffin has been used as surface protection of wood throughout the ages but its use for impregnation to improve wood resistance to biodegradation is recent. This study determined the main improvements on wood properties with paraffin impregnation. Healthy Pinus pinaster Ait. wood was impregnated with paraffin at different levels using a hot–cold process. Weight gain, equilibrium moisture content and dimensional stability (ASE) at 35 and 65 % relative humidity, termite durability against Reticulitermes grassei (Clément), bending strength, bending stiffness (MOE) and Janka hardness were determined. Density increased from 0.57 to 0.99, ASE ranged between 38–96 % and 16–71 % for 35 and 65 % relative humidity, respectively. Equilibrium moisture content decreased from 9.9 and 12.0 % to 0.8 and 3.6 % for 35 and 65 % relative humidity. Termite durability improved from level 4 to level 3 of attack, and higher termite mortality was found in treated wood (52 % against 17 %). Bending strength (MOR) increased with paraffin weight gain, reaching a 39 % increase. MOE also increased by about 13 % for wood with a weight gain around 80 %. Janka hardness increased significantly reaching about 40 % for wood with 80 % weight gain. Paraffin impregnated wood has improved properties with regard to equilibrium moisture content, dimensional stability and density, bending strength and Janka hardness, and resistance against termites.
Resumo:
Despite significant advances in building technologies with the use of conventional construction materials (as concrete and steel), which significantly have driven the construction industry, earth construction have demonstrated its importance and relevance, as well as it has matched in an efficient and eco-friendly manner the social housing concerns. The diversity of earth construction techniques allowed this material to adapt to different climatic, cultural and social contexts until the present time. However, in Angola, the construction with earth is still associated with population fringes of weak economic resources, for which, given the impossibility of being able to acquire modern construction materials (steel, cement, brick, among others), they resort to the use of available natural materials. Furthermore, the lack of scientific and technical knowledge justifies the negative appreciation of traditional building techniques, and the derogatory way how are considered the earth constructions in Angolan territory. Given the country's current development status, and taking into account the environmental requirements and the real socio-economic sustainability of Angola, it is considered that one of the viable and adequate options, could be the recovering and upgrading of the ancestral techniques of earth construction. The purpose of this research is to develop the technical and scientific knowledge in order to improve and optimize these construction solutions, responding to the real problems of housing quality as well as to the current social, economic and environmental sustainability requirements. In this paper, a description of the physical and mechanical characteristics of the adobes typically used in the construction of traditional houses in some localities of Huambo, province in Angola, is carried out. The methodology was based on mechanical in-situ testing in adobe blocks manufactured with traditional procedures: i) tensile strength evaluated with the bending test and compressive strength test on earth blocks specimens; and, ii) durability and erodibility test by Geelong method adopting the New Zealand standard (NZS) procedures (4297: 1998; 4297: 1998 and 4297: 1999). The results allow the characterization of the materials used in the construction of raw earth in the Huambo region, contributing to the development of knowledge of these sustainable and traditional housing constructive solutions with a strong presence in Angola [1, 2]. This study is part of a larger project in the area of Earth Construction [3], which aims to produce knowledge which can stimulate the use of environmental friendly construction materials and contribute to develop constructive solutions with improved performance, durability, comfort, safety and sustainability.