908 resultados para DRY STORAGE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper assesses the impact of the location and configuration of Battery Energy Storage Systems (BESS) on Low-Voltage (LV) feeders. BESS are now being deployed on LV networks by Distribution Network Operators (DNOs) as an alternative to conventional reinforcement (e.g. upgrading cables and transformers) in response to increased electricity demand from new technologies such as electric vehicles. By storing energy during periods of low demand and then releasing that energy at times of high demand, the peak demand of a given LV substation on the grid can be reduced therefore mitigating or at least delaying the need for replacement and upgrade. However, existing research into this application of BESS tends to evaluate the aggregated impact of such systems at the substation level and does not systematically consider the impact of the location and configuration of BESS on the voltage profiles, losses and utilisation within a given feeder. In this paper, four configurations of BESS are considered: single-phase, unlinked three-phase, linked three-phase without storage for phase-balancing only, and linked three-phase with storage. These four configurations are then assessed based on models of two real LV networks. In each case, the impact of the BESS is systematically evaluated at every node in the LV network using Matlab linked with OpenDSS. The location and configuration of a BESS is shown to be critical when seeking the best overall network impact or when considering specific impacts on voltage, losses, or utilisation separately. Furthermore, the paper also demonstrates that phase-balancing without energy storage can provide much of the gains on unbalanced networks compared to systems with energy storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

South American seasonally-dry tropical forests (SDTF) are critically endangered, with only a small proportion of their original distribution remaining. This paper presents a 12,000 year reconstruction of climate change, fire and vegetation dynamics in the Bolivian Chiquitano SDTF, based upon pollen and charcoal analysis, to examine the resilience of this ecosystem to drought and fire. Our analysis demonstrates a complex relationship between climate, fire and floristic composition over multi-millennial time scales, and reveals that moisture variability is the dominant control upon community turnover in this ecosystem. Maximum drought during the early Holocene, consistent with regional drought reconstructions, correlates with a period of significant fire activity between 8,000 and 7,000 cal yr BP which resulted in a decrease in SDTF diversity. As fire activity declined, but severe regional droughts persisted through the mid-Holocene, SDTF, including Anadenanthera and Astronium, became firmly established in the Bolivian lowlands. The trend of decreasing fire activity during the last two millennia promotes the idea among forest ecologists that SDTF are threatened by fire. Our analysis shows that the Chiquitano seasonally dry biome has been more resilient to Holocene changes in climate and fire regime than previously assumed, but raises questions over whether this resilience will continue in the future under increased temperatures and drought coupled with a higher frequency anthropogenic fire regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unpredictable flooding is a major constraint to rice production. It can occur at any growth stage. The effect of simulated flooding post-anthesis on yield and subsequent seed quality of pot-grown rice (Oryza sativa L.) plants was investigated in glasshouses and controlled-environment growth cabinets. Submergence post-anthesis (9-40 DAA) for 3 or 5 days reduced seed weight of japonica rice cv. Gleva, with considerable pre-harvest sprouting (up to 53%). The latter was greater the later in seed development and maturation that flooding occurred. Sprouted seed had poor ability to survive desiccation or germinate normally upon rehydration, whereas the effects of flooding on the subsequent air-dry seed storage longevity (p50) of the non-sprouted seed fraction was negligible. The indica rice cvs IR64 and IR64Sub1 (introgression of submergence tolerance gene Submergence1A-1) were both far more tolerant to flooding post-anthesis than cv. Gleva: four days’ submergence of these two near-isogenic cultivars at 10-40 DAA resulted less than 1% sprouted seeds. The presence of the Sub1A-1 allele in cv. IR64Sub1 was verified by gel electrophoresis and DNA sequencing. It had no harmful effect on loss in seed viability during storage compared with IR64 in both control and flooded environments. Moreover, the germinability and changes in dormancy during seed development and maturation were very similar to IR64. The efficiency of using chemical spray to increase seed dormancy was investigated in the pre-harvest sprouting susceptible rice cv. Gleva. Foliar application of molybdenum at 100 mg L-1 reduced sprouted seeds by 15-21% following 4 days’ submergence at 20-30 DAA. Analyses confirmed that the treatment did result in molybdenum uptake by the plants, and also tended to increase seed abscisic acid concentration. The latter was reduced by submergence and declined exponentially during grain ripening. The selection of submergence-tolerant varieties was more successful than application of molybdenum in reducing pre-harvest sprouting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a power management strategy (PMS) has been developed for the control of energy storage in a system subjected to loads of random duration. The PMS minimises the costs associated with the energy consumption of specific systems powered by a primary energy source and equipped with energy storage, under the assumption that the statistical distribution of load durations is known. By including the variability of the load in the cost function, it was possible to define the optimality criteria for the power flow of the storage. Numerical calculations have been performed obtaining the control strategies associated with the global minimum in energy costs, for a wide range of initial conditions of the system. The results of the calculations have been tested on a MATLAB/Simulink model of a rubber tyre gantry (RTG) crane equipped with a flywheel energy storage system (FESS) and subjected to a test cycle, which corresponds to the real operation of a crane in the Port of Felixstowe. The results of the model show increased energy savings and reduced peak power demand with respect to existing control strategies, indicating considerable potential savings for port operators in terms of energy and maintenance costs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This in vitro study evaluated the microtensile bond strength of a resin composite to Er:YAG-prepared dentin after long-term storage and thermocycling. Eighty bovine incisors were selected and their roots removed. The crowns were ground to expose superficial dentin. The samples were randomly divided according to cavity preparation method (I-Er:YAG laser and II-carbide bur). Subsequently, an etch & rinse adhesive system was applied and the samples were restored with a resin composite. The samples were subdivided according to time of water storage (WS)/number of thermocycles (TC) performed: A) 24 hours WS/no TC; B) 7 days WS/500 TC; C) 1 month WS/2,000 TC; D) 6 months WS/12,000 TC. The teeth were sectioned in sticks with a cross-sectional area of 1.0-mm(2), which were loaded in tension in a universal testing machine. The data were subjected to two-way ANOVA, Scheffe and Fisher`s tests at a 5% level. In general, the bur-prepared group displayed higher microtensile bond strength values than the laser-treated group. Based on one-month water storage and 2,000 thermocycles, the performance of the tested adhesive system to Er:YAG-laser irradiated dentin was negatively affected (Group IC), while adhesion of the bur-prepared group decreased only within six months of water storage combined with 12,000 thermocycles (Group IID). It may be concluded that adhesion to the Er:YAG laser cavity preparation was more affected by the methods used for simulating degradation of the adhesive interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P>The aim of this research was to study spray drying as potential action to protect chlorophyllide from environmental conditions for shelf-life extension and characterisation of the powders. Six formulations were prepared with 7.5 and 10 g of carrier agents [gum Arabic (GA), maltodextrin (MA) and soybean protein isolate (SPI)]/100 mL of chlorophyllide solutions. The powders were evaluated for morphological characteristics (SEM), particle size, water activity, moisture, density, hygroscopicity, cold water solubility, sorption isotherms, colour and stability, during 90 days. All the powders were highly soluble, with solubility values around 97%. A significant lower hygroscopicity was observed for GA powders, whilst the lower X(m) values obtained by GAB equation fitting of the sorption isotherms was observed for the 7.5 g MA/100 mL samples. All formulations, but the 1 (7.5 g SPI/100 mL of chlorophyllide), provided excellent stability to the chlorophyllide during 90 days of storage even at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this work was to evaluate the fatty acid composition of the Longissimus muscle from carcasses of Nellore steers fed diets with calcium salts of fatty acids (CSFA) and high moisture corn. Forty eight steers were fed during 70 days four diets containing dry corn (DC), high moisture corn (HM). dry corn plus CSFA (DC-CSFA) or high moisture corn plus CSFA (HM-CSFA). Fatty acid composition of the Longissimus muscle was determined by gas chromatography. Corn type had no effect on the ether extract percentage and in the content of the majority of the fatty acids, although steers fed HMC showed higher levels of polyunsaturated fatty acids and polyunsaturated/saturated ratio. Feeding CSFA increased ether extract percentage but had no effect on total of saturated, unsaturated and saturated: unsaturated ratio. Both high moisture corn and calcium salts of fatty acids increased CIA (cis9, trans11) and total CIA concentrations in intramuscular fat (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, cholesterol oxide formation and alteration of fatty acid composition were analyzed in n-3 enriched eggs under different storage periods and two temperatures. The eggs enriched with n-3 fatty acids were stored at 5 or 25 degrees C for 45 days and subsequently boiled or fried. For each treatment, 12 yolks were analyzed every 15 days including time zero. The concentrations of the cholesterol oxides 7-ketocholesterol, 7 beta-hydroxycholesterol, and 7 alpha-hydroxycholesterol increased during the storage period and were higher in fried eggs. Only the 7-ketocholesterol was affected by the storage temperature, and its concentration was highest in eggs stored at 25 degrees C. There was no significant difference in the contents of cholesterol and vitamin E at the different storage periods; however, the concentration of vitamin E decreased with thermal treatment. In addition, the n-3 polyunsaturated fatty acids, especially 18:3, 20:5, and 22:6, were reduced throughout the storage at 5 and 25 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, lipolysis, proteolysis and viscosity of ultra-high temperature (UHT) milk containing different somatic cell counts (SCC) were investigated. UHT milks were analysed on days 8, 30, 60, 90 and 120 of storage. Lipolysis as measured by free fatty acids increase, casein degradation and viscosity of UHT milk were not affected by SCC but increased during storage. A negative relationship was observed between SCC and casein as a percentage of true protein on the 120th day of storage, hence indicating that high SCC increases the proteolysis of UHT milk by the end of its shelf life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study analyzes evapotranspiration data for three wet and two seasonally dry rain forest sites in Amazonia. The main environmental (net radiation, vapor pressure deficit, and aerodynamic conductance) and vegetation (surface conductance) controls of evapotranspiration are also assessed. Our research supports earlier studies that demonstrate that evapotranspiration in the dry season is higher than that in the wet season and that surface net radiation is the main controller of evapotranspiration in wet equatorial sites. However, our analyses also indicate that there are different factors controlling the seasonality of evapotranspiration in wet equatorial rain forest sites and southern seasonally dry rain forests. While the seasonality of evapotranspiration in wet equatorial forests is driven solely by environmental factors, in seasonally dry forests, it is also biotically controlled with the surface conductance varying between seasons by a factor of approximately 2. The identification of these different drivers of evapotranspiration is a major step forward in our understanding of the water dynamics of tropical forests and has significant implications for the future development of vegetation-atmosphere models and land use and conservation planning in the region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aircraft measurements of cloud condensation nuclei (CCN) during the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) were conducted over the Southwestern Amazon region in September-October 2002, to emphasize the dry-to-wet transition season. The CCN concentrations were measured for values within the range 0.1-1.0% of supersaturation. The CCN concentration inside the boundary layer revealed a general decreasing trend during the transition from the end of the dry season to the onset of the wet season. Clean and polluted areas showed large differences. The differences were not so strong at high levels in the troposphere and there was evidence supporting the semi-direct aerosol effect in suppressing convection through the evaporation of clouds by aerosol absorption. The measurements also showed a diurnal cycle following biomass burning activity. Although biomass burning was the most important source of CCN, it was seen as a source of relatively efficient CCN, since the increase was significant only at high supersaturations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intraseasonal and interannual variability of extreme wet and dry anomalies over southeastern Brazil and the western subtropical South Atlantic Ocean are investigated. Precipitation data are obtained from the Global Precipitation Climatology Project (GPCP) in pentads during 23 austral summers (December-February 1979/80-2001/02). Extreme wet (dry) events are defined according to 75th (25th) percentiles of precipitation anomaly distributions observed in two time scales: intraseasonal and interannual. The agreement between the 25th and 75th percentiles of the GPCP precipitation and gridded precipitation obtained from stations in Brazil is also examined. Variations of extreme wet and dry anomalies on interannual time scales are investigated along with variations of sea surface temperature (SST) and circulation anomalies. The South Atlantic SST dipole seems related to interannual variations of extreme precipitation events over southeastern Brazil. It is shown that extreme wet and dry events in the continental portion of the South Atlantic convergence zone (SACZ) are decoupled from extremes over the oceanic portion of the SACZ and there is no coherent dipole of extreme precipitation regimes between tropics and subtropics on interannual time scales. On intraseasonal time scales, the occurrence of extreme dry and wet events depends on the propagation phase of extratropical wave trains and consequent intensification (weakening) of 200-hPa zonal winds. Extreme wet and dry events over southeastern Brazil and subtropical Atlantic are in phase on intraseasonal time scales. Extreme wet events over southeastern Brazil and subtropical Atlantic are observed in association with low-level northerly winds above the 75th percentile of the seasonal climatology over central-eastern South America. Extreme wet events on intraseasonal time scales over southeastern Brazil are more frequent during seasons not classified as extreme wet or dry on interannual time scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Amazon Basin is crucial to global circulatory and carbon patterns due to the large areal extent and large flux magnitude. Biogeophysical models have had difficulty reproducing the annual cycle of net ecosystem exchange (NEE) of carbon in some regions of the Amazon, generally simulating uptake during the wet season and efflux during seasonal drought. In reality, the opposite occurs. Observational and modeling studies have identified several mechanisms that explain the observed annual cycle, including: (1) deep soil columns that can store large water amount, (2) the ability of deep roots to access moisture at depth when near-surface soil dries during annual drought, (3) movement of water in the soil via hydraulic redistribution, allowing for more efficient uptake of water during the wet season, and moistening of near-surface soil during the annual drought, and (4) photosynthetic response to elevated light levels as cloudiness decreases during the dry season. We incorporate these mechanisms into the third version of the Simple Biosphere model (SiB3) both singly and collectively, and confront the results with observations. For the forest to maintain function through seasonal drought, there must be sufficient water storage in the soil to sustain transpiration through the dry season in addition to the ability of the roots to access the stored water. We find that individually, none of these mechanisms by themselves produces a simulation of the annual cycle of NEE that matches the observed. When these mechanisms are combined into the model, NEE follows the general trend of the observations, showing efflux during the wet season and uptake during seasonal drought.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell wall storage polysaccharides (CWSPs) are found as the principal storage compounds in seeds of many taxonomically important groups of plants. These groups developed extremely efficient biochemical mechanisms to disassemble cell walls and use the products of hydrolysis for growth. To accumulate these storage polymers, developing seeds also contain relatively high activities of noncellulosic polysaccharide synthases and thus are interesting models to seek the discovery of genes and enzymes related to polysaccharide biosynthesis. CWSP systems offer opportunities to understand phenomena ranging from polysaccharide deposition during seed maturation to the control of source-sink relationship in developing seedlings. By studying polysaccharide biosynthesis and degradation and the consequences for cell and physiological behavior, we can use these models to develop future biotechnological applications.