984 resultados para DIAGNOSTIC MARKERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Recent observational studies indicate that post-diagnostic use of aspirin in breast cancer patients may protect against cancer progression perhaps by inhibiting cyclooxygenase-2 dependent mechanisms. Evidence also supports a crucial role for interactions between tumour cells and circulating platelets in cancer growth and dissemination, therefore, use of low-dose aspirin may reduce the risk of death from cancer in breast cancer patients.

METHODS: A cohort of newly diagnosed breast cancer patients (1998 to 2006) were identified in the UK Clinical Practice Research Datalink (and confirmed by cancer registry linkage). Cancer-specific deaths were identified up to 2011 from Office for National Statistics mortality data. A nested case-control analysis was conducted using conditional logistic regression to compare post-diagnostic aspirin exposure using General Practice prescription data in 1,435 cases (breast cancer deaths) with 5,697 controls (matched by age and year of diagnosis).

RESULTS: After breast cancer diagnosis, 18.3% of cancer-specific deaths and 18.5% of matched controls received at least one prescription for low-dose aspirin, corresponding to an odds ratio (OR) of 0.98 (95% CI 0.83, 1.15). Adjustment for potential confounders (including stage and grade) had little impact on this estimate. No dose response relationship was observed when the number of tablets was investigated and no associations were seen when analyses were stratified by receipt of prescriptions for aspirin in the pre-diagnostic period, by stage at diagnosis or by receipt of prescriptions for hormone therapy.

CONCLUSIONS: Overall, in this large population-based cohort of breast cancer patients, there was little evidence of an association between receipt of post-diagnostic prescriptions for low-dose aspirin and breast cancer-specific death. However, information was not available on medication compliance or over-the-counter use of aspirin, which may have contributed to the null findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Next-generation sequencing (NGS) is beginning to show its full potential for diagnostic and therapeutic applications. In particular, it is enunciating its capacity to contribute to a molecular taxonomy of cancer, to be used as a standard approach for diagnostic mutation detection, and to open new treatment options that are not exclusively organ-specific. If this is the case, how much validation is necessary and what should be the validation strategy, when bringing NGS into the diagnostic/clinical practice? This validation strategy should address key issues such as: what is the overall extent of the validation? Should essential indicators of test performance such as sensitivity of specificity be calculated for every target or sample type? Should bioinformatic interpretation approaches be validated with the same rigour? What is a competitive clinical turnaround time for a NGS-based test, and when does it become a cost-effective testing proposition? While we address these and other related topics in this commentary, we also suggest that a single set of international guidelines for the validation and use of NGS technology in routine diagnostics may allow us all to make a much more effective use of resources.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Diagnosis of meningococcal disease relies on recognition of clinical signs and symptoms that are notoriously non-specific, variable, and often absent in the early stages of the disease. Loop-mediated isothermal amplification (LAMP) has previously been shown to be fast and effective for the molecular detection of meningococcal DNA in clinical specimens. We aimed to assess the diagnostic accuracy of meningococcal LAMP as a near-patient test in the emergency department.

Methods: For this observational cohort study of diagnostic accuracy, children aged 0-13 years presenting to the emergency department of the Royal Belfast Hospital for Sick Children (Belfast, UK) with suspected meningococcal disease were eligible for inclusion. Patients underwent a standard meningococcal pack of investigations testing for meningococcal disease. Respiratory (nasopharyngeal swab) and blood specimens were collected from patients and tested with near-patient meningococcal LAMP and the results were compared with those obtained by reference laboratory tests (culture and PCR of blood and cerebrospinal fluid).

Findings: Between Nov 1, 2009, and Jan 31, 2012, 161 eligible children presenting at the hospital underwent the meningococcal pack of investigations and were tested for meningococcal disease, of whom 148 consented and were enrolled in the study. Combined testing of respiratory and blood specimens with use of LAMP was accurate (sensitivity 89% [95% CI 72-96], specificity 100% [97-100], positive predictive value 100% [85-100]; negative predictive value 98% [93-99]) and diagnostically useful (positive likelihood ratio 213 [95% CI 13-infinity] and negative likelihood ratio 0·11 [0·04-0·32]). The median time required for near-patient testing from sample to result was 1 h 26 min (IQR 1 h 20 min-1 h 32 min).

Interpretation: Meningococcal LAMP is straightforward enough for use in any hospital with basic laboratory facilities, and near-patient testing with this method is both feasible and effective. By contrast with existing UK National Institute of Health and Care Excellence guidelines, we showed that molecular testing of non-invasive respiratory specimens from children is diagnostically accurate and clinically useful.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background:
Ovarian cancer is the fifth leading cause of cancer in women and has poor
long-term survival, in part, due to chemoresistance. Tumour hypoxia is associated with
chemoresistance in ovarian cancer. However, relatively little is known about the genes
activated in ovarian cancer which cause chemoresistance due to hypoxia. This study
aimed to firstly identify genes whose expression is associated with hypoxia-induced
chemoresistance, and secondly select hypoxia-associated biomarkers and evaluate their
expression in ovarian tumours.
Design:
Cisplatin-sensitive (A2780) and cisplatin-resistant (A2780cis) ovarian cancer
cell lines were exposed to combinations of hypoxia and/or cisplatin as part of a matrix
designed to reflect clinically relevant scenarios. RNA was extracted and interrogated
on Affymetrix Human Gene arrays. Differential gene expression was analysed for cells
exposed to hypoxia and/or treated with cisplatin. Potential markers of chemoresistance
were selected for evaluation in a cohort of ovarian tumour samples by R
T-PCR.
Results:
A wide range of genes associated with chemoresistance were differentially
expressed in cells exposed to hypoxia and/or cisplatin. Selected genes [ANGPTL4,
HER3 and HIF-1
α
] were chosen for further validation in a cohort of ovarian tumour
samples. High expression of ANGPTL4 trended towards reduced progression-free and
overall survival. High expression of HER3 trended to increased progression-free but
reduced overall survival, while high expression of HIF-1
α
trended towards reduced
progression-free and increased overall survival.
Conclusions:
In conclusion, this study has further characterized the relationship between
hypoxia and chemoresistance in an ovarian cancer model. We have also identified many
potential biomarkers of hypoxia and platinum resistance and provided initial validation
of a subset of these markers in ovarian cancer tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vaccination procedures within the cattle industry are important disease control tools to minimize economic and welfare burdens associated with respiratory pathogens. However, new vaccine, antigen and carrier technologies are required to combat emerging viral strains and enhance the efficacy of respiratory vaccines, particularly at the point of pathogen entry. New technologies, specifically metabolomic profiling, could be applied to identify metabolite immune-correlates representative of immune protection following vaccination aiding in the design and screening of vaccine candidates. This study for the first time demonstrates the ability of untargeted UPLC-MS metabolomic profiling to identify metabolite immune correlates characteristic of immune responses following mucosal vaccination in calves. Male Holstein Friesian calves were vaccinated with Pfizer Rispoval® PI3 + RSV intranasal vaccine and metabolomic profiling of post-vaccination plasma revealed 12 metabolites whose peak intensities differed significantly from controls. Plasma levels of glycocholic acid, N-[(3α,5β,12α)-3,12-Dihydroxy-7,24-dioxocholan-24-yl]glycine, uric acid and biliverdin were found to be significantly elevated in vaccinated animals following secondary vaccine administration, whereas hippuric acid significantly decreased. In contrast, significant upregulation of taurodeoxycholic acid and propionylcarnitine levels were confined to primary vaccine administration. Assessment of such metabolite markers may provide greater information on the immune pathways stimulated from vaccine formulations and benchmarking early metabolomic responses to highly immunogenic vaccine formulations could provide a means for rapidly assessing new vaccine formulations. Furthermore, the identification of metabolic systemic immune response markers which relate to specific cell signaling pathways of the immune system could allow for targeted vaccine design to stimulate key pathways which can be assessed at the metabolic level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The European badger (Meles meles) is a natural reservoir for Mycobacterium bovis, the causative agent of Bovine Tuberculosis, and has consequently been implicated in transmission of the disease to cattle. This study describes application of a novel M. bovis-specific immunochromatographic (lateral flow) assay in combination with immunomagnetic separation (IMS-LFD), to test badger faeces samples. In total, 441 faeces samples from badgers of unknown disease status collected from latrines at 110 badger setts throughout Northern Ireland (NI) and 100 faeces samples from badgers of known infection status from Great Britain (GB) were tested. Faeces (approx. 1g) was homogenised in 9 ml phosphate buffered saline, filtered (70 µm), and then 6-8 ml subjected to the IMS-LFD test. Residual clarified faecal homogenates were subjected to automated IMS followed by MGIT™ liquid culture (AIMS-MGIT™ culture) and qPCR (AIMS-qPCR). Evidence for the presence of M. bovis was obtained for 78 (18%), 61 (14%) and 140 (32%) of 441 NI badger faeces samples, and 10 (10%), 41 (41%) and 56 (56%) of 100 GB badger faeces samples, by IMS-LFD, AIMS-MGIT culture and AIMS-qPCR tests, respectively. The IMS-LFD test was less sensitive than AIMS-qPCR for detection of M. bovis and was, therefore, detecting badgers shedding high numbers of M. bovis in their faeces only. However, these ‘super shedders’ may be primarily responsible for the spread of Bovine Tuberculosis so are, therefore, an important target. This non-invasive test could form the basis of a field surveillance tool to indicate infected badger groups which are actively spreading M. bovis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: There is growing interest in the potential utility of real-time polymerase chain reaction (PCR) in diagnosing bloodstream infection by detecting pathogen deoxyribonucleic acid (DNA) in blood samples within a few hours. SeptiFast (Roche Diagnostics GmBH, Mannheim, Germany) is a multipathogen probe-based system targeting ribosomal DNA sequences of bacteria and fungi. It detects and identifies the commonest pathogens causing bloodstream infection. As background to this study, we report a systematic review of Phase III diagnostic accuracy studies of SeptiFast, which reveals uncertainty about its likely clinical utility based on widespread evidence of deficiencies in study design and reporting with a high risk of bias. 

Objective: Determine the accuracy of SeptiFast real-time PCR for the detection of health-care-associated bloodstream infection, against standard microbiological culture. 

Design: Prospective multicentre Phase III clinical diagnostic accuracy study using the standards for the reporting of diagnostic accuracy studies criteria. 

Setting: Critical care departments within NHS hospitals in the north-west of England. 

Participants: Adult patients requiring blood culture (BC) when developing new signs of systemic inflammation. 

Main outcome measures: SeptiFast real-time PCR results at species/genus level compared with microbiological culture in association with independent adjudication of infection. Metrics of diagnostic accuracy were derived including sensitivity, specificity, likelihood ratios and predictive values, with their 95% confidence intervals (CIs). Latent class analysis was used to explore the diagnostic performance of culture as a reference standard. 

Results: Of 1006 new patient episodes of systemic inflammation in 853 patients, 922 (92%) met the inclusion criteria and provided sufficient information for analysis. Index test assay failure occurred on 69 (7%) occasions. Adult patients had been exposed to a median of 8 days (interquartile range 4–16 days) of hospital care, had high levels of organ support activities and recent antibiotic exposure. SeptiFast real-time PCR, when compared with culture-proven bloodstream infection at species/genus level, had better specificity (85.8%, 95% CI 83.3% to 88.1%) than sensitivity (50%, 95% CI 39.1% to 60.8%). When compared with pooled diagnostic metrics derived from our systematic review, our clinical study revealed lower test accuracy of SeptiFast real-time PCR, mainly as a result of low diagnostic sensitivity. There was a low prevalence of BC-proven pathogens in these patients (9.2%, 95% CI 7.4% to 11.2%) such that the post-test probabilities of both a positive (26.3%, 95% CI 19.8% to 33.7%) and a negative SeptiFast test (5.6%, 95% CI 4.1% to 7.4%) indicate the potential limitations of this technology in the diagnosis of bloodstream infection. However, latent class analysis indicates that BC has a low sensitivity, questioning its relevance as a reference test in this setting. Using this analysis approach, the sensitivity of the SeptiFast test was low but also appeared significantly better than BC. Blood samples identified as positive by either culture or SeptiFast real-time PCR were associated with a high probability (> 95%) of infection, indicating higher diagnostic rule-in utility than was apparent using conventional analyses of diagnostic accuracy. 

Conclusion: SeptiFast real-time PCR on blood samples may have rapid rule-in utility for the diagnosis of health-care-associated bloodstream infection but the lack of sensitivity is a significant limiting factor. Innovations aimed at improved diagnostic sensitivity of real-time PCR in this setting are urgently required. Future work recommendations include technology developments to improve the efficiency of pathogen DNA extraction and the capacity to detect a much broader range of pathogens and drug resistance genes and the application of new statistical approaches able to more reliably assess test performance in situation where the reference standard (e.g. blood culture in the setting of high antimicrobial use) is prone to error.