825 resultados para DELAY
Resumo:
Fumigation of stored grain with phosphine (PH 3) is used widely to control the lesser grain borer Rhyzopertha dominica. However, development of high level resistance to phosphine in this species threatens control. Effective resistance management relies on knowledge of the expression of resistance in relation to dosage at all life stages. Therefore, we determined the mode of inheritance of phosphine resistance and strength of the resistance phenotype at each developmental stage. We achieved this by comparing mortality and developmental delay between a strongly resistant strain (R-strain), a susceptible strain (S-strain) and their F 1 progenies. Resistance was a maternally inherited, semi-dominant trait in the egg stage but was inherited as an autosomal, incompletely recessive trait in larvae and pupae. The rank order of developmental tolerance in both the sensitive and resistant strains was eggs > pupae > larvae. Comparison of published values for the response of adult R. dominica relative to our results from immature stages reveals that the adult stage of the S-strain is more sensitive to phosphine than are larvae. This situation is reversed in the R-strain as the adult stage is much more resistant to phosphine than even the most tolerant immature stage. Phosphine resistance factors at LC 50 were eggs 400×, larvae 87× and pupae 181× with respect to reference susceptible strain (S-strain) adults indicating that tolerance conferred by a particular immature stage neither strongly nor reliably interacts with the genetic resistance element. Developmental delay relative to unfumigated control insects was observed in 93% of resistant pupae, 86% of resistant larvae and 41% of resistant eggs. Increased delay in development and the toxicity response to phosphine exposure were both incompletely recessive. We show that resistance to phosphine has pleiotropic effects and that the expression of these effects varies with genotype and throughout the life history of the insect. © 2012.
Resumo:
This analysis of the variations of brown tiger prawn (Penaeus esculentus) catch in Moreton Bay multispecies trawl fishery estimated catchability using a delay difference model. It integrated several factors responsible for variations in catchability: targeting of fishing effort, increasing fishing power and changing availability. An analysis of covariance was used to define fishing events targeted at brown tiger prawns. A general linear model estimated inter-annual variations of fishing power. Temperature-induced changes in prawn behaviour played an important role on the dynamics of this fishery. Maximum likelihood estimates of targeted catchability (4.09 ± 0.42 × 10−4 boat-day−1) were twice as large as non-targeted catchability (1.86 ± 0.25 × 10−4 boat-day−1). The causes of recent declines in fishing effort in this fishery were discussed.
Resumo:
Conyza bonariensis is a major weed infesting zero-tilled cropping systems in subtropical Australia, particularly in wheat and winter fallows. Uncontrolled C.bonariensis survives to become a problem weed in the following crops or fallows. As no herbicide has been registered for C.bonariensis in wheat, the effectiveness of 11 herbicides, currently registered for other broad-leaved weeds in wheat, was evaluated in two pot and two field experiments. As previous research showed that the age of C.bonariensis, and to a lesser extent, the soil moisture at spraying affected herbicide efficacy, these factors also were investigated. The efficacy of the majority of herbicide treatments was reduced when large rosettes (5-15cm diameter) were treated, compared with small rosettes (<5cm diameter). However, for the majority of herbicide treatments, the soil moisture did not affect the herbicide efficacy in the pot experiments. In the field, a delay in herbicide treatment of 2 weeks reduced the herbicide efficacy consistently across herbicide treatments, which was related to weed age but not to soil moisture differences. Across all the experiments, four herbicides controlled C.bonariensis in wheat consistently (83-100%): 2,4-D; aminopyralid + fluroxypyr; picloram + MCPA + metsulfuron; and picloram + high rates of 2,4-D. Thus, this problem weed can be effectively and consistently controlled in wheat, particularly when small rosettes are treated, and therefore C.bonariensis will have a less adverse impact on the following fallow or crop.
Resumo:
Post-rainy sorghum (Sorghum bicolor (L.) Moench) production underpins the livelihood of millions in the semiarid tropics, where the crop is affected by drought. Drought scenarios have been classified and quantified using crop simulation. In this report, variation in traits that hypothetically contribute to drought adaptation (plant growth dynamics, canopy and root water conducting capacity, drought stress responses) were virtually introgressed into the most common post-rainy sorghum genotype, and the influence of these traits on plant growth, development, and grain and stover yield were simulated across different scenarios. Limited transpiration rates under high vapour pressure deficit had the highest positive effect on production, especially combined with enhanced water extraction capacity at the root level. Variability in leaf development (smaller canopy size, later plant vigour or increased leaf appearance rate) also increased grain yield under severe drought, although it caused a stover yield trade-off under milder stress. Although the leaf development response to soil drying varied, this trait had only a modest benefit on crop production across all stress scenarios. Closer dissection of the model outputs showed that under water limitation, grain yield was largely determined by the amount of water availability after anthesis, and this relationship became closer with stress severity. All traits investigated increased water availability after anthesis and caused a delay in leaf senescence and led to a ‘stay-green’ phenotype. In conclusion, we showed that breeding success remained highly probabilistic; maximum resilience and economic benefits depended on drought frequency. Maximum potential could be explored by specific combinations of traits.
Development of Sample Pretreatment and Liquid Chromatographic Techniques for Antioxidative Compounds
Resumo:
In this study, novel methodologies for the determination of antioxidative compounds in herbs and beverages were developed. Antioxidants are compounds that can reduce, delay or inhibit oxidative events. They are a part of the human defense system and are obtained through the diet. Antioxidants are naturally present in several types of foods, e.g. in fruits, beverages, vegetables and herbs. Antioxidants can also be added to foods during manufacturing to suppress lipid oxidation and formation of free radicals under conditions of cooking or storage and to reduce the concentration of free radicals in vivo after food ingestion. There is growing interest in natural antioxidants, and effective compounds have already been identified from antioxidant classes such as carotenoids, essential oils, flavonoids and phenolic acids. The wide variety of sample matrices and analytes presents quite a challenge for the development of analytical techniques. Growing demands have been placed on sample pretreatment. In this study, three novel extraction techniques, namely supercritical fluid extraction (SFE), pressurised hot water extraction (PHWE) and dynamic sonication-assisted extraction (DSAE) were studied. SFE was used for the extraction of lycopene from tomato skins and PHWE was used in the extraction of phenolic compounds from sage. DSAE was applied to the extraction of phenolic acids from Lamiaceae herbs. In the development of extraction methodologies, the main parameters of the extraction were studied and the recoveries were compared to those achieved by conventional extraction techniques. In addition, the stability of lycopene was also followed under different storage conditions. For the separation of the antioxidative compounds in the extracts, liquid chromatographic methods (LC) were utilised. Two novel LC techniques, namely ultra performance liquid chromatography (UPLC) and comprehensive two-dimensional liquid chromatography (LCxLC) were studied and compared with conventional high performance liquid chromatography (HPLC) for the separation of antioxidants in beverages and Lamiaceae herbs. In LCxLC, the selection of LC mode, column dimensions and flow rates were studied and optimised to obtain efficient separation of the target compounds. In addition, the separation powers of HPLC, UPLC, HPLCxHPLC and HPLCxUPLC were compared. To exploit the benefits of an integrated system, in which sample preparation and final separation are performed in a closed unit, dynamic sonication-assisted extraction was coupled on-line to a liquid chromatograph via a solid-phase trap. The increased sensitivity was utilised in the extraction of phenolic acids from Lamiaceae herbs. The results were compared to those of achieved by the LCxLC system.
Resumo:
Reducing crop row spacing and delaying time of weed emergence may provide crops a competitive edge over weeds. Field experiments were conducted to evaluate the effects of crop row spacing (11, 15, and 23-cm) and weed emergence time (0, 20, 35, 45, 55, and 60 days after wheat emergence; DAWE) on Galium aparine and Lepidium sativum growth and wheat yield losses. Season-long weed-free and crop-free treatments were also established to compare wheat yield and weed growth, respectively. Row spacing and weed emergence time significantly affected the growth of both weed species and wheat grain yields. For both weed species, the maximum plant height, shoot biomass, and seed production were observed in the crop-free plots, and delayed emergence decreased these variables. In weed-crop competition plots, maximum weed growth was observed when weeds emerged simultaneously with the crop in rows spaced 23-cm apart. Less growth of both weed species was observed in narrow row spacing (11-cm) of wheat as compared with wider rows (15 and 23-cm). These weed species produced less than 5 seeds plant-1 in 11-cm wheat rows when they emerged at 60 DAWE. Presence of weeds in the crop especially at early stages was devastating for wheat yields. Therefore, maximum grain yield (4.91tha-1) was recorded in the weed-free treatment at 11-cm row spacing. Delay in time of weed emergence and narrow row spacing reduced weed growth and seed production and enhanced wheat grain yield, suggesting that these strategies could contribute to weed management in wheat.
Resumo:
The behaviour of the slotted ALOHA satellite channel with a finite buffer at each of the user terminals is studied. Approximate relationships between the queuing delay, overflow probabilities and buffer size are derived as functions of the system input parameters (i.e. the number of users, the traffic intensity, the transmission and the retransmission probabilities) for two cases found in the literature: the symmetric case (same transmission and retransmission probabilities), and the asymmetric case (transmission probability far greater than the retransmission probability). For comparison, the channel performance with an infinite buffer is also derived. Additionally, the stability condition for the system is defined in the latter case. The analysis carried out in the paper reveals that the queuing delays are quite significant, especially under high traffic conditions.
Resumo:
The ever expanding growth of the wireless access to the Internet in recent years has led to the proliferation of wireless and mobile devices to connect to the Internet. This has created the possibility of mobile devices equipped with multiple radio interfaces to connect to the Internet using any of several wireless access network technologies such as GPRS, WLAN and WiMAX in order to get the connectivity best suited for the application. These access networks are highly heterogeneous and they vary widely in their characteristics such as bandwidth, propagation delay and geographical coverage. The mechanism by which a mobile device switches between these access networks during an ongoing connection is referred to as vertical handoff and it often results in an abrupt and significant change in the access link characteristics. The most common Internet applications such as Web browsing and e-mail make use of the Transmission Control Protocol (TCP) as their transport protocol and the behaviour of TCP depends on the end-to-end path characteristics such as bandwidth and round-trip time (RTT). As the wireless access link is most likely the bottleneck of a TCP end-to-end path, the abrupt changes in the link characteristics due to a vertical handoff may affect TCP behaviour adversely degrading the performance of the application. The focus of this thesis is to study the effect of a vertical handoff on TCP behaviour and to propose algorithms that improve the handoff behaviour of TCP using cross-layer information about the changes in the access link characteristics. We begin this study by identifying the various problems of TCP due to a vertical handoff based on extensive simulation experiments. We use this study as a basis to develop cross-layer assisted TCP algorithms in handoff scenarios involving GPRS and WLAN access networks. We then extend the scope of the study by developing cross-layer assisted TCP algorithms in a broader context applicable to a wide range of bandwidth and delay changes during a handoff. And finally, the algorithms developed here are shown to be easily extendable to the multiple-TCP flow scenario. We evaluate the proposed algorithms by comparison with standard TCP (TCP SACK) and show that the proposed algorithms are effective in improving TCP behavior in vertical handoff involving a wide range of bandwidth and delay of the access networks. Our algorithms are easy to implement in real systems and they involve modifications to the TCP sender algorithm only. The proposed algorithms are conservative in nature and they do not adversely affect the performance of TCP in the absence of cross-layer information.
Resumo:
The TCP protocol is used by most Internet applications today, including the recent mobile wireless terminals that use TCP for their World-Wide Web, E-mail and other traffic. The recent wireless network technologies, such as GPRS, are known to cause delay spikes in packet transfer. This causes unnecessary TCP retransmission timeouts. This dissertation proposes a mechanism, Forward RTO-Recovery (F-RTO) for detecting the unnecessary TCP retransmission timeouts and thus allow TCP to take appropriate follow-up actions. We analyze a Linux F-RTO implementation in various network scenarios and investigate different alternatives to the basic algorithm. The second part of this dissertation is focused on quickly adapting the TCP's transmission rate when the underlying link characteristics change suddenly. This can happen, for example, due to vertical hand-offs between GPRS and WLAN wireless technologies. We investigate the Quick-Start algorithm that, in collaboration with the network routers, aims to quickly probe the available bandwidth on a network path, and allow TCP's congestion control algorithms to use that information. By extensive simulations we study the different router algorithms and parameters for Quick-Start, and discuss the challenges Quick-Start faces in the current Internet. We also study the performance of Quick-Start when applied to vertical hand-offs between different wireless link technologies.
Resumo:
Wireless access is expected to play a crucial role in the future of the Internet. The demands of the wireless environment are not always compatible with the assumptions that were made on the era of the wired links. At the same time, new services that take advantage of the advances in many areas of technology are invented. These services include delivery of mass media like television and radio, Internet phone calls, and video conferencing. The network must be able to deliver these services with acceptable performance and quality to the end user. This thesis presents an experimental study to measure the performance of bulk data TCP transfers, streaming audio flows, and HTTP transfers which compete the limited bandwidth of the GPRS/UMTS-like wireless link. The wireless link characteristics are modeled with a wireless network emulator. We analyze how different competing workload types behave with regular TPC and how the active queue management, the Differentiated services (DiffServ), and a combination of TCP enhancements affect the performance and the quality of service. We test on four link types including an error-free link and the links with different Automatic Repeat reQuest (ARQ) persistency. The analysis consists of comparing the resulting performance in different configurations based on defined metrics. We observed that DiffServ and Random Early Detection (RED) with Explicit Congestion Notification (ECN) are useful, and in some conditions necessary, for quality of service and fairness because a long queuing delay and congestion related packet losses cause problems without DiffServ and RED. However, we observed situations, where there is still room for significant improvements if the link-level is aware of the quality of service. Only very error-prone link diminishes the benefits to nil. The combination of TCP enhancements improves performance. These include initial window of four, Control Block Interdependence (CBI) and Forward RTO recovery (F-RTO). The initial window of four helps a later starting TCP flow to start faster but generates congestion under some conditions. CBI prevents slow-start overshoot and balances slow start in the presence of error drops, and F-RTO reduces unnecessary retransmissions successfully.
Resumo:
The explosive sensitivity of methylammonium perchlorates has been investigated by differential thermal analysis, thermogravimetric analysis, mass spectrometry and explosion delay experiments. The decomposition temperature of these compounds increases in the order CH3NH3ClO4>(CH3)2NH2ClO4>(CH3)3NHClO4. The activation energy shows the reverse order, indicating thereby that the stability increases with increasing substitution. Mass spectrometric investigation, however, suggests an increasing reactivity with increasing substitution. A possible explanation for such behaviour is proposed. It appears that explosion delay is correlated with thermal decomposition and impact sensitivity.
Resumo:
Epigenetic modifications of histones regulate gene expression and lead to the establishment and maintenance of cellular phenotypes during development. Histone acetylation depends on a balance between the activities of histone acetyltransferases and histone deacetylases (HDACs) and influences transcriptional regulation. In this study, we analyse the roles of HDACs during growth and development of one of the cellular slime moulds, the social amoeba Dictyostelium discoideum. The inhibition of HDAC activity by trichostatin A results in histone hyperacetylation and a delay in cell aggregation and differentiation. Cyclic AMP oscillations are normal in starved amoebae treated with trichostatin A but the expression of a subset of cAMP-regulated genes is delayed. Bioinformatic analysis indicates that there are four genes encoding putative HDACs in D. discoideum. Using biochemical, genetic and developmental approaches, we demonstrate that one of these four genes, hdaB, is dispensable for growth and development under laboratory conditions. A knockout of the hdaB gene results in a social context-dependent phenotype: hdaB- cells develop normally but sporulate less efficiently than the wild type in chimeras. We infer that HDAC activity is important for regulating the timing of gene expression during the development of D. discoideum and for defining aspects of the phenotype that mediate social behaviour in genetically heterogeneous groups.
Resumo:
Delay and disruption tolerant networks (DTNs) are computer networks where round trip delays and error rates are high and disconnections frequent. Examples of these extreme networks are space communications, sensor networks, connecting rural villages to the Internet and even interconnecting commodity portable wireless devices and mobile phones. Basic elements of delay tolerant networks are a store-and-forward message transfer resembling traditional mail delivery, an opportunistic and intermittent routing, and an extensible cross-region resource naming service. Individual nodes of the network take an active part in routing the traffic and provide in-network data storage for application data that flows through the network. Application architecture for delay tolerant networks differs also from those used in traditional networks. It has become feasible to design applications that are network-aware and opportunistic, taking an advantage of different network connection speeds and capabilities. This might change some of the basic paradigms of network application design. DTN protocols will also support in designing applications which depend on processes to be persistent over reboots and power failures. DTN protocols could also be applicable to traditional networks in cases where high tolerance to delays or errors would be desired. It is apparent that challenged networks also challenge the traditional strictly layered model of network application design. This thesis provides an extensive introduction to delay tolerant networking concepts and applications. Most attention is given to challenging problems of routing and application architecture. Finally, future prospects of DTN applications and implementations are envisioned through recent research results and an interview with an active researcher of DTN networks.
Resumo:
With the proliferation of wireless and mobile devices equipped with multiple radio interfaces to connect to the Internet, vertical handoff involving different wireless access technologies will enable users to get the best of connectivity and service quality during the lifetime of a TCP connection. A vertical handoff may introduce an abrupt, significant change in the access link characteristics and as a result the end-to-end path characteristics such as the bandwidth and the round-trip time (RTT) of a TCP connection may change considerably. TCP may take several RTTs to adapt to these changes in path characteristics and during this interval there may be packet losses and / or inefficient utilization of the available bandwidth. In this thesis we study the behaviour and performance of TCP in the presence of a vertical handoff. We identify the different handoff scenarios that adversely affect TCP performance. We propose several enhancements to the TCP sender algorithm that are specific to the different handoff scenarios to adapt TCP better to a vertical handoff. Our algorithms are conservative in nature and make use of cross-layer information obtained from the lower layers regarding the characteristics of the access links involved in a handoff. We evaluate the proposed algorithms by extensive simulation of the various handoff scenarios involving access links with a wide range of bandwidth and delay. We show that the proposed algorithms are effective in improving the TCP behaviour in various handoff scenarios and do not adversely affect the performance of TCP in the absence of cross-layer information.
Resumo:
A versatile and flexible digital pulse programmer for two-pulse, three-pulse, saturation burst and Carr-Purcell sequences is described. Independently variable controls for pulse widths (0.2 mu s to 100 mu s), delay between pulses (0.2 mu s to 100 s) and for number of pulses (1 to 99) for the saturation burst and for the Carr-Purcell sequence, are brought to the front panel. The programmer can be used for one-shot experiments as well as for repetitive experiments.