983 resultados para Cytokine-mediated Osteoclastogenesis
Resumo:
Atherosclerosis has an inflammatory basis, with cytokines, cellular adhesion molecules and pro-inflammatory cells having important roles in the initiation and progression of this process. Interleukin (IL) 6, IL-10 and transforming growth factor (TGF) β have been proposed as important modulators of the atherosclerotic process, with IL-6 having a pro-inflammatory, atherogenic effect and IL-10 and TGF-β having anti-inflammatory, protective roles. The possible role of functional polymorphisms in the promoter regions of the IL-6, IL-10 and TGF-β genes in the susceptibility to ischaemic heart disease (IHD) was investigated in a well-defined Irish population using two recently described family-based tests of association. We genotyped 1,012 individuals from 386 families with at least one member prematurely affected with IHD. Using the combined transmission disequilibrium test (TDT)/sib-TDT and the pedigree disequilibrium test, no association between any of the IL-6 -174G/C, IL-10 -1082G/A and TGF-β -509C/T polymorphisms and IHD was found. Our data demonstrate that, in an Irish population, these polymorphisms are not associated with IHD. © Springer-Verlag 2004.
Resumo:
Diabetes is associated with oxidative stress and increased levels of inflammatory cytokines. The aim of the study was to assess the effects of inflammatory cytokines and oxidative stress associated with raised glucose levels on inducible nitric oxide synthase (iNOS) promoter activity in intestinal epithelial cells. High glucose (25 mmol/l) conditions reduced glutathione (GSH) levels in the human intestinal epithelial cell line, DLD-1. Addition of the antioxidant alpha-lipoic acid resulted in the restoration of GSH levels to normal. Upregulation of basal iNOS promoter activity was observed when cells were incubated in high glucose alone. This effect was significantly reduced by the addition of the antioxidant, alpha-lipoic acid and completely blocked with inhibition of NFkappa B activity. Cytokine stimulation [interleukin-1 beta, tumor necrosis factor-alpha, interferon-gamma] induced iNOS promoter activity in all conditions and this was accompanied by an increase in nitric oxide (NO) production. Inhibition of NFkappa-B activity decreased but did not completely inhibit cytokine-induced iNOS promoter activity and subsequent NO production. In conclusion, high glucose-induced iNOS promoter activity is mediated in part through intracellular GSH and NFkappa-B.
Resumo:
The Interact System Model (ISM) developed by Fisher and Hawes (1971) for the analysis of face-to-face communication during small-group problem solving activities was used to study online communication. This tool proved to be of value in the analysis, but the conversation patterns reported by Fisher (1980) did not fully appear in the online environment. Participants displayed a habit of "being too polite" and not fully voicing their disagreements with ideas posed by others. Thus progress towards task completion was slow and incomplete.
Resumo:
Parasites can structure biological communities directly through population regulation and indirectly by processes such as apparent competition. However, the role of parasites in the process of biological invasion is less well understood and mechanisms of parasite mediation of predation among hosts are unclear. Mutual predation between native and invading species is an important factor in determining the outcome of invasions in freshwater amphipod communities. Here, we show that parasites mediate mutual intraguild predation among native and invading species and may thereby facilitate the invasion process. We find that the native amphipod Gammarus duebeni celticus is host to a microsporidian parasite, Pleistophora sp. (new species), with a frequency of infection of 0-90%. However, the parasite does not infect three invading species, G. tigrinus, G. pulex and Crangonyx pseudogracilis. In field and laboratory manipulations, we show that the parasite exhibits cryptic virulence: the parasite does not affect host fitness in single-species populations, but virulence becomes apparent when the native and invading species interact. That is, infection has no direct effect on G. d. celticus survivorship, size or fecundity; however, in mixed-species experiments, parasitized natives show a reduced capacity to prey on the smaller invading species and are more likely to be preyed upon by the largest invading species. Thus, by altering dominance relationships and hierarchies of mutual predation, parasitism strongly influences, and has the potential to change, the outcome of biological invasions.
Resumo:
With field, laboratory, and modeling approaches, we examined the interplay among habitat structure, intraguild predation (IGP), and parasitism in an ongoing species invasion. Native Gammarus duebeni celticus (Crustacea: Amphipoda) are often, but not always, replaced by the invader Gammarus pulex through differential IGP. The muscle-wasting microsporidian parasite Pleistophora mulleri infects the native but not the invader. We found a highly variable prevalence of P. mulleri in uninvaded rivers, with 0–91% of hosts parasitized per sample. In addition, unparasitized natives dominated fast-flowing riffle patches of river, whereas parasitized individuals dominated slower- flowing, pooled patches. We examined the survivorship of invader and native in single and mixed-species microcosms with high, intermediate, and zero parasite prevalence. G. pulex survivorship was high in all treatments, whereas G. duebeni subsp. celticus survivorship was significantly lower in the presence of the invader. Further, parasitized G. duebeni subsp. celticus experienced near-total elimination. Models of the species replacement process implied that parasite-enhanced IGP would make invasion by G. pulex more likely, regardless of habitat and parasite spatial structure. However, where heterogeneity in parasite prevalence creates a landscape of patches with different susceptibilities to invasion, G. pulex may succeed in cases where invasion would not be possible if patches were equivalent. The different responses of parasitized and unparasitized G. duebeni subsp. celticus to environmental heterogeneity potentially link landscape patterns to the success or failure of the invasion process.
Resumo:
An early and critical event in beta2 integrin signalling during neutrophil adhesion is activation of Src tyrosine kinases and Syk. In the present study, we report Src kinase-dependent beta2 integrin-induced tyrosine phosphorylation of Cbl occurring in parallel with increased Cbl-associated tyrosine kinase activity. These events concurred with activation of Fgr and, surprisingly, also with dissociation of this Src tyrosine kinase from Cbl. Moreover, the presence of the Src kinase inhibitor PP1 in an in vitro assay had only a limited effect on the Cbl-associated kinase activity. These results suggest that an additional active Src-dependent tyrosine kinase associates with Cbl. The following observations imply that Syk is such a kinase: (i) beta2 integrins activated Syk in a Src-dependent manner, (ii) Syk was associated with Cbl much longer than Fgr was, and (iii) the Syk inhibitor piceatannol (3,4,3´,5´-tetrahydroxy-trans-stilbene) abolished the Cbl-associated kinase activity in an in vitro assay. Effects of the mentioned interactions between these two kinases and Cbl may be related to the finding that Cbl is a ubiquitin E3 ligase. Indeed, we detected beta2 integrin-induced ubiquitination of Fgr that, similar to the phosphorylation of Cbl, was abolished in cells pretreated with PP1. However, the ubiquitination of Fgr did not cause any apparent degradation of the protein. In contrast with Fgr, Syk was not modified by the E3 ligase. Thus Cbl appears to be essential in beta2 integrin signalling, first by serving as a matrix for a subsequent agonist-induced signalling interaction between Fgr and Syk, and then by mediating ubiquitination of Fgr which possibly affects its interaction with Cbl.
Resumo:
In human neutrophils, beta2 integrin engagement mediated a decrease in GTP-bound Rac1 and Rac2. Pretreatment of neutrophils with LY294002 or PP1 (inhibiting phosphatidylinositol 3-kinase (PI 3-kinase) and Src kinases, respectively) partly reversed the beta2 integrin-induced down-regulation of Rac activities. In contrast, beta2 integrins induced stimulation of Cdc42 that was independent of Src family members. The PI 3-kinase dependency of beta2 integrin-mediated decrease in GTP-bound Rac could be explained by an enhanced Rac-GAP activity, since this activity was blocked by LY204002, whereas PP1 only had a minor effect. The fact that only Rac1 but not Rac2 (the dominating Rac) redistributed to the detergent-insoluble fraction and that it was independent of GTP loading excludes the possibility that down-regulation of Rac activities was due to depletion of GTP-bound Rac from the detergent-soluble fraction. The beta2 integrin-triggered relocalization of Rac1 to the cytoskeleton was enabled by a PI 3-kinase-induced dissociation of Rac1 from LyGDI. The dissociations of Rac1 and Rac2 from LyGDI also explained the PI 3-kinase-dependent translocations of Rac GTPases to the plasma membrane. However, these accumulations of Rac in the membrane, as well as that of p47phox and p67phox, were also regulated by Src tyrosine kinases. Inasmuch as Rac GTPases are part of the NADPH oxidase and the respiratory burst is elicited in neutrophils adherent by beta2 integrins, our results indicate that activation of the NADPH oxidase does not depend on the levels of Rac-GTP but instead requires a beta2 integrin-induced targeting of the Rac GTPases as well as p47phox and p67phox to the plasma membrane.