922 resultados para Cyclic peptides


Relevância:

20.00% 20.00%

Publicador:

Resumo:

While bradykinin has been identified in the skin secretions from several species of amphibian, bradykinin-related peptides (BRPs) are more common constituents. These peptides display a plethora of primary structural variations from the type peptide which include single or multiple amino acid substitutions, N- and/or C-terminal extensions and post-translational modifications such as proline hydroxylation and tyrosine sulfation. Such modified peptides have been reported in species from many families, including Bombinatoridae, Hylidae and Ranidae. The spectrum of these peptides in a given species is thought to be reflective of its predator profile from different vertebrate taxa. Here we report the isolation of BRPs and parallel molecular cloning of their respective biosynthetic precursor-encoding cDNAs from the skin secretions of the Mexican leaf frog (Pachymedusa dacnicolor), the Central American red-eyed leaf frog (Agalychnis callidryas) and the South American orange-legged leaf frog (Phyllomedusa hypochondrialis). Additionally, the eight different BRPs identified were chemically synthesized and screened for bioactivity using four different mammalian smooth muscle preparations and their effects and rank potencies were found to be radically different in these with some acting preferentially through bradykinin B1-type receptors and others through B2-type receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Post-weld heat-treatment (PWHT) has been established as one of the cost-effective ways to improve the functional properties, namely shape memory and super-elastic effects (SME and SE), of laser-welded NiTi alloys. However, the functional performance of the laser-welded joint at different working temperatures has not been explored yet. The purpose of this study is to investigate the effect of different working temperatures on the functional properties of the laser-welded NiTi alloys before and after PWHT by applying cyclic deformation tests. Two laser-welded samples: as-welded and heat-treated sample (after PWHT at 350 oC or 623 K) were tested in this work at room temperature, 50 oC (or 323 K) and 75 oC (or 348 K) respectively. The samples were cyclically loaded and unloaded for 10 cycles up to 4 % strain. The critical stress to induce the martensitic transformation and the residual strain after the cyclic tests were recorded. The results indicate that the heat-treated sample exhibited better functional properties than the as-welded sample at room temperature and 50 oC (or 323 K). However, both the as-welded and heat-treated samples failed in the cyclic tests at 75 oC (or 348 K). These findings are important to determine the feasible working temperature range for the laser-welded NiTi components to exhibit desirable functional properties in engineering applications involving cyclic loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-assembling dipeptides conjugated to naphthalene show considerable promise as nanomaterial structures, biomaterials, and drug delivery devices. Biomaterial infections are responsible for high rates of patient mortality and morbidity. The presence of biofilm bacteria, which thrive on implant surfaces, are a huge burden on healthcare budgets, as they are highly resistant to current therapeutic strategies. Ultrashort cationic self-assembled peptides represent a highly innovative and cost-effective strategy to form antibacterial nanomaterials. Lysine conjugated variants display the greatest potency with 2% w/v NapFFKK hydrogels significantly reducing the viable Staphylococcus epidermidis biofilm by 94%. Reducing the size of the R-group methylene chain on cationic moieties resulted in reduction of antibiofilm activity. The primary amine of the protruding R-group tail may not be as readily available to interact with negatively charged bacterial membranes. Cryo-SEM, FTIR, CD spectroscopy, and oscillatory rheology provided evidence of supramolecular hydrogel formation at physiological pH (pH 7.4). Cytotoxicity assays against murine fibroblast (NCTC 929) cell lines confirmed the gels possessed reduced cytotoxicity relative to bacterial cells, with limited hemolysis upon exposure to equine erythrocytes. The results presented in this paper highlight the significant potential of ultrashort cationic naphthalene peptides as future biomaterials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A significant number of proteins in both eukaryotes and prokaryotes are known to be post-translationally modified by the addition of phosphate, serving as a means of rapidly regulating protein function. Phosphorylation of the amino acids serine, threonine and tyrosine are the focus of the vast majority of studies aimed at elucidating the extent and roles of such modification, yet other amino acids, including histidine and aspartate, are also phosphorylated. Although histidine phosphorylation is known to play extensive roles in signalling in eukaryotes, plants and fungi, roles for phosphohistidine are poorly defined in higher eukaryotes. Characterization of histidine phosphorylation aimed at elucidating such information is problematic due to the acid-labile nature of the phosphoramidate bond, essential for many of its biological functions. Although MSbased strategies have proven extremely useful in the analysis of other types of phosphorylated peptides, the chromatographic procedures essential for such approaches promote rapid hydrolysis of phosphohistidinecontaining peptides. Phosphate transfer to non-biologically relevant aspartate residues during MS analysis further complicates the scenario. © 2013 Biochemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Image

An asymmetric total synthesis of the mast cell inhibitor (+)-monanchorin is reported in which a Sharpless AD on 11 and a cyclic sulfate ring opening with an azide feature as key steps. After further manipulation, a novel guanidine-controlled ester reduction provided the guanidine-hemiaminal 25 which underwent Wittig olefination to give 27. Hydrogenation and a second guanidine-controlled reduction of the ester in 28, to obtain aldehyde 29, then set up a trifluoroacetic acid mediated cyclization to give (+)-monanchorin TFA salt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The non disulphide-bridged peptides (NDBPs) of scorpion venoms are attracting increased interest due to their structural heterogeneity and broad spectrum of biological activities. Here, two novel peptides, named AcrAP1 and AcrAP2, have been identified in the lyophilised venom of the Arabian scorpion, Androctonus crassicauda, through “shotgun” molecular cloning of their biosynthetic precursor-encoding cDNAs. The respective mature peptides, predicted from these cloned cDNAs, were subsequently isolated from the same venom sample using reverse phase HPLC and their identities were confirmed by use of mass spectrometric techniques. Both were found to belong to a family of highly-conserved scorpion venom antimicrobial peptides - a finding confirmed through the biological investigation of synthetic replicates. Analogues of both peptides designed for enhanced cationicity, displayed enhanced potency and spectra of antimicrobial activity but, unlike the native peptides, these also displayed potent growth modulation effects on a range of human cancer cell lines. Thus natural peptide templates from venom peptidomes can provide the basis for rational analogue design to improve both biological potency and spectrum of action. The diversity of such templates from such natural sources undoubtedly provides the pharmaceutical industry with unique lead compounds for drug discovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In acne vulgaris, antimicrobial peptides (AMPs) could play a dual role; i.e., protective by acting against Propionibacterium acnes, pro-inflammatory by acting as signalling molecules. The cutaneous expression of 15 different AMPs was investigated in acne patients; furthermore, the impact of isotretinoin therapy on AMP expression was analysed in skin biopsies from 13 patients with acne vulgaris taken before, during and after a 6-month treatment cycle with isotretinoin using quantitative real-time polymerase chain reaction. Cutaneous expression of the AMPs cathelicidin, human β-defensin-2 (HBD-2), lactoferrin, lysozyme, psoriasin (S100A7), koebnerisin (S100A15), and RNase 7 was upregulated in untreated acne vulgaris, whereas α-defensin-1 (HNP-1) was downregulated compared to controls. While relative expression levels of cathelicidin, HBD-2, lactoferrin, psoriasin (S100A7), and koebnerisin (S100A15) decreased during isotretinoin treatment, only those of cathelicidin and koebnerisin returned to normal after 6 months of isotretinoin therapy. The increased expression of lysozyme and RNase 7 remained unaffected by isotretinoin treatment. The levels of granulysin, RANTES (CCL5), perforin, CXCL9, substance P, chromogranin B, and dermcidin were not regulated in untreated acne patients and isotretinoin had no effect on these AMPs. In conclusion, the expression of various AMPs is altered in acne vulgaris. Isotretinoin therapy normalizes the cutaneous production of distinct AMPs while the expression of others is still increased in healing acne. Considering the antimicrobial and pro-inflammatory role of AMPs, these molecules could serve as specific targets for acne therapy and maintenance of clinical remission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Differentiation between septic and aseptic loosening of joint replacements is essential for successful revision surgery, but reliable markers for the diagnosis of low-grade infection are lacking. The present study was performed to assess intra-articular and systemic levels of antimicrobial peptides and proinflammatory cytokines as diagnostic markers for periprosthetic joint infection. Methods: Fifteen consecutive patients with staphylococcal periprosthetic joint infections and twenty control patients with aseptic loosening of total hip and knee replacements were included in this prospective, single-center, controlled clinical trial. Expression of the antimicrobial peptides human β-defensin-2 (HBD-2), human β-defensin-3 (HBD-3), and cathelicidin LL-37 (LL-37) was determined by ELISA (enzyme-linked immunosorbent assay) in serum and joint aspirates. Proinflammatory cytokines were assessed in serum and joint aspirates with use of cytometric bead arrays. C-reactive protein in serum, microbiology, and histopathology of periprosthetic tissue served as the “gold standard” for the diagnosis of infection. Results: The antimicrobial peptides HBD-3 and LL-37 were significantly elevated in joint aspirates from patients with periprosthetic joint infection compared with patients with aseptic loosening, and the area under the curve (AUC) in a receiver operating characteristic curve analysis was equal to 0.745 and 0.875, respectively. Additionally, significant local increases in the proinflammatory cytokines interleukin (IL)-1β, IL-4, IL-6, IL-17A, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α were observed to be associated with infection. Logistic regression analysis indicated that the combination of an antimicrobial peptide with another synovial fluid biomarker improved diagnostic accuracy; the AUC value was 0.916 for LL-37 and IL-4, 0.895 for LL-37 and IL-6, 0.972 for HBD-3 and IL-4, and 0.849 for HBD-3 and IL-6. In contrast, the only antimicrobial peptides and cytokines in serum that showed a significant systemic increase in association with infection were HBD-2, IL-4, and IL-6 (all of which had an AUC value of <0.75). Conclusions: The present study showed promising results for the use of antimicrobial peptides and other biomarkers in synovial fluid for the diagnosis of periprosthetic joint infection, and analysis of the levels in synovial fluid was more accurate than analysis of serum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Constant exposure to a wide variety of microbial pathogens represents a major challenge for our skin. Antimicrobial peptides (AMPs) are mediators of cutaneous innate immunity and protect primarily against microbial infections. Cathelicidins were among the first AMPs identified in human skin and recent evidence suggests that they exert a dual role in innate immune defense: At first, due to their antimicrobial activity they kill pathogens directly. In addition, these peptides initiate a potent host response to infection resulting in cytokine release, inflammation and a cellular response. Disturbed cathelicidin expression and function was observed in several common inflammatory skin diseases, such as psoriasis where cathelicidin peptide converts inert self-DNA and self-RNA into an autoimmune stimulus. In atopic dermatitis decreased levels of cathelicidin facilitating microbial superinfections have been discussed. Furthermore, abnormally processed cathelicidin peptides induce inflammation and a vascular response in rosacea. Until recently, the molecular mechanisms underlying cathelicidin regulation were unknown. Recently, the vitamin D3 pathway was identified as the major regulator of cathelicidin expression. Consequently, vitamin D3 entered the spotlight as an immune modulator with impact on both innate and adaptive immunity. Therapies targeting vitamin D3 signaling may provide new approaches for infectious and inflammatory skin diseases by affecting both innate and adaptive immune functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monocyclic allylic cis-1,2-diols reacted with sulfuryl chloride at 0 °C in a regio- and stereo-selective manner to give 2-chloro-1-sulfochloridates, which were hydrolysed to yield the corresponding trans-1,2-chlorohydrins. At −78 °C, with very slow addition of sulfuryl chloride, cyclic sulfates were formed in good yields, proved to be very reactive with nucleophiles and rapidly decomposed on attempted storage. Reaction of a cyclic sulfate with sodium azide yielded a trans-azidohydrin without evidence of allylic rearrangement occurring. An enantiopure bicyclic cis-1,2-diol reacted with sulfuryl chloride to give, exclusively, a trans-1,2-dichloride enantiomer with retention of configuration at the benzylic centre and inversion at the non-benzylic centre; a mechanism is presented to rationalise the observation.



Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomaterial-related infections are a persistent burden on patient health, recovery, mortality and healthcare budgets. Self-assembled antimicrobial peptides have evolved from the area of antimicrobial peptides. Peptides serve as important weapons in nature, and increasingly medicine, for combating microbial infection and biofilms. Self-assembled peptides harness a “bottom-up” approach, whereby the primary peptide sequence may be modified with natural and unnatural amino acids to produce an inherently antimicrobial hydrogel. Gelation may be tailored to occur in the presence of physiological and infective indicators (e.g. pH, enzymes) and therefore allow local, targeted antimicrobial therapy at the site of infection. Peptides demonstrate inherent biocompatibility, antimicrobial activity, biodegradability and numerous functional groups. They are therefore prime candidates for the production of polymeric molecules that have the potential to be conjugated to biomaterials with precision. Non-native chemistries and functional groups are easily incorporated into the peptide backbone allowing peptide hydrogels to be tailored to specific functional requirements. This article reviews an area of increasing interest, namely self-assembled peptides and their potential therapeutic applications as innovative hydrogels and biomaterials in the prevention of biofilm-related infection.