954 resultados para Cyclic AMP Response Element Modulator
Resumo:
There is a lack of plant response to fertilizer K in some sandy soils even though routine soil tests for soil available K are shown to be low. This lack of plant response to K fertilizer application may be explained by K release from nonexchangeable forms. Greenhouse and laboratory experiments were conducted to evaluate (a) response of bentgrass (Agrostis palustris [Agrostis stolonifera var. palustris]) cv. Pencross grown in rootzones with different sand sources to K fertilizer application and (b) K release from nonexchangeable forms from the different sand sources as an index to K availability. Experimental variables in the greenhouse were 2 K levels (0 and 250 mg K/kg soil) and 8 sand rootzone sources. Rootzone soils were sub-irrigated to ensure no K loss from leaching. Two laboratory methods (boiling 1 M HNO3 extraction and continuous leaching with 0.01 M HCl) and total K uptake by the bentgrass were employed to index K release from nonexchangeable forms for each rootzone source. K fertilizer application significantly increased bentgrass yield growing in one rootzone source and root weight in 3 rootzone sources. K uptake by bentgrass and the 2 laboratory methods showed important differences in K release from the sand rootzones. The K removed by the 2 laboratory methods was closely related to leaf tissue K and K uptake, with the 1 M HNO3 extraction method providing the closest fit. The release of K from primary minerals in some rootzones with high sand content is proceeding at rates to satisfy bentgrass requirements for K. The 1 M HNO3 extraction method may provide an alternative to the routine laboratory procedures presently being used to measure the extractable K in sand-based constructed putting greens by measuring K contributed by nonexchangeable forms.
Resumo:
A scheme is introduced which allows computer readable multiple choice forms used in traditional examinations to be employed for constructed response items.
Resumo:
This paper reinforces the argument of Harding and Sirmans (2002) that the observed preference of lenders for extended maturity rather than renegotiation of the principle in the case of loan default is due to the superior incentive properties of the former. Specifically, borrowers have a greater incentive to avoid default under extended maturity because it reduces the likelihood that they will be able to escape paying off the full loan balance. Thus, although extended maturity leaves open the possibility of foreclosure, it will be preferred to renegotiation as long as the dead weight loss from foreclosure is not too large.
Resumo:
Working with CT DEP, the NOAA Office of Damage Assessment, Remediation and Restoration uses funds recovered from polluters to conduct restoration projects. Here in Connecticut, projects include the Jordan Brook Fishway in Waterford, the Remington Gun Club site at Lordship Point in Stratford, and more.
Resumo:
The degradation of proteins by the ubiquitin proteasome system is essential for cellular homeostasis in the heart. An important regulator of metabolic homeostasis is AMP-activated protein kinase (AMPK). During nutrient deprivation, AMPK is activated and intracellular proteolysis is enhanced through the ubiquitin proteasome system (UPS). Whether AMPK plays a role in protein degradation through the UPS in the heart is not known. Here I present data in support of the hypothesis that AMPK transcriptionally regulates key players in the UPS, which, under extreme conditions can be detrimental to the heart. The ubiquitin ligases MAFbx /Atrogin-1 and MuRF1, key regulators of protein degradation, and AMPK activity are increased during nutrient deprivation. Pharmacologic and genetic activation of AMPK is sufficient for the induction of MAFbx/Atrogin-1 and MuRF1 in cardiomyocytes and in the heart in vivo. Comprehensive experiments demonstrate that the molecular mechanism by which AMPK regulates MuRF1 expression is through the transcription factor myocyte enhancer factor 2 (MEF2), which is involved in stress response and cardiomyocyte remodeling. MuRF1 is required for AMPK-mediated protein degradation through the UPS in cardiomyocytes. Consequently, the absence of MuRF1 during chronic fasting preserves cardiac function, possibly by limiting degradation of critical metabolic enzymes. Furthermore, during cardiac hypertrophy, chronic activation of AMPK also leads to cardiac dysfunction, possibly through enhanced protein degradation and metabolic dysregulation. Collectively, my findings demonstrate that AMPK regulates expression of ubiquitin ligases which are required for UPS-mediated protein degradation in the heart. Based on these results, I propose that specific metabolic signals may serve as modulators of intracellular protein degradation in the heart.
Resumo:
The degradation of proteins by the ubiquitin proteasome system is essential for cellular homeostasis in the heart. An important regulator of metabolic homeostasis is AMP-activated protein kinase (AMPK). During nutrient deprivation, AMPK is activated and intracellular proteolysis is enhanced through the ubiquitin proteasome system (UPS). Whether AMPK plays a role in protein degradation through the UPS in the heart is not known. Here I present data in support of the hypothesis that AMPK transcriptionally regulates key players in the UPS, which, under extreme conditions can be detrimental to the heart. The ubiquitin ligases MAFbx /Atrogin-1 and MuRF1, key regulators of protein degradation, and AMPK activity are increased during nutrient deprivation. Pharmacologic and genetic activation of AMPK is sufficient for the induction of MAFbx/Atrogin-1 and MuRF1 in cardiomyocytes and in the heart in vivo. Comprehensive experiments demonstrate that the molecular mechanism by which AMPK regulates MuRF1 expression is through the transcription factor myocyte enhancer factor 2 (MEF2), which is involved in stress response and cardiomyocyte remodeling. MuRF1 is required for AMPK-mediated protein degradation through the UPS in cardiomyocytes. Consequently, the absence of MuRF1 during chronic fasting preserves cardiac function, possibly by limiting degradation of critical metabolic enzymes. Furthermore, during cardiac hypertrophy, chronic activation of AMPK also leads to cardiac dysfunction, possibly through enhanced protein degradation and metabolic dysregulation. Collectively, my findings demonstrate that AMPK regulates expression of ubiquitin ligases which are required for UPS-mediated protein degradation in the heart. Based on these results, I propose that specific metabolic signals may serve as modulators of intracellular protein degradation in the heart.
Resumo:
Traumatic brain injury (TBI) often results in disruption of the blood brain barrier (BBB), which is an integral component to maintaining the central nervous system homeostasis. Recently cytosolic calcium levels ([Ca2+]i), observed to elevate following TBI, have been shown to influence endothelial barrier integrity. However, the mechanism by which TBI-induced calcium signaling alters the endothelial barrier remains unknown. In the present study, an in vitro BBB model was utilized to address this issue. Exposure of cells to biaxial mechanical stretch, in the range expected for TBI, resulted in a rapid cytosolic calcium increase. Modulation of intracellular and extracellular Ca2+ reservoirs indicated that Ca2+ influx is the major contributor for the [Ca2+]i elevation. Application of pharmacological inhibitors was used to identify the calcium-permeable channels involved in the stretch-induced Ca2+ influx. Antagonist of transient receptor potential (TRP) channel subfamilies, TRPC and TRPP, demonstrated a reduction of the stretch-induced Ca2+ influx. RNA silencing directed at individual TRP channel subtypes revealed that TRPC1 and TRPP2 largely mediate the stretch-induced Ca2+ response. In addition, we found that nitric oxide (NO) levels increased as a result of mechanical stretch, and that inhibition of TRPC1 and TRPP2 abolished the elevated NO synthesis. Further, as myosin light chain (MLC) phosphorylation and actin cytoskeleton rearrangement are correlated with endothelial barrier disruption, we investigated the effect mechanical stretch had on the myosin-actin cytoskeleton. We found that phosphorylated MLC was increased significantly by 10 minutes post-stretch, and that inhibition of TRP channel activity or NO synthesis both abolished this effect. In addition, actin stress fibers formation significantly increased 2 minutes post-stretch, and was abolished by treatment with TRP channel inhibitors. These results suggest that, in brain endothelial cells, TRPC1 and TRPP2 are activated by TBI-mechanical stress and initiate actin-myosin contraction, which may lead to disruption of the BBB.
Resumo:
Candida albicans causes opportunistic fungal infections in humans and is a significant cause of mortality and morbidity in immune-compromised individuals. Dectin-2, a C-type lectin receptor, is required for recognition of C. albicans by innate immune cells and is required for initiation of the anti-fungal immune response. We set out to identify components of the intracellular signaling cascade downstream of Dectin-2 activation in macrophages and to understand their importance in mediating the immune response to C. albicans in vivo. Using macrophages derived from Phospholipase-C-gamma 1 and 2 (PLCγ1and PLCγ2) knockout mice, we demonstrate that PLCγ2, but not PLCγ1, is required for activation of NF-κB and MAPK signaling pathways after C. albicans stimulation, resulting in impaired production of pro-inflammatory cytokines and reactive oxygen species. PLCγ2-deficient mice are highly susceptible to infections with C. albicans, indicating the importance of this pathway to the anti-fungal immune response. TAK1 and TRAF6 are critical nodes in NF-κB and MAPK activation downstream of immune surveillance and may be critical to the signaling cascade initiated by C-type lectin receptors in response to C. albicans. Macrophages derived from both TAK1 and TRAF6-deficient mice were unable to activate NF-κB and MAPK and consequently failed to produce inflammatory cytokines characteristic of the response to C. albicans. In this work we have identified PLCγ2, TAK1 and TRAF6 as components of a signaling cascade downstream of C. albicans recognition by C-type lectin receptors and as critical mediators of the anti-fungal immune response. A mechanistic understanding of the host immune response to C. albicans is important for the development of anti-fungal therapeutics and in understanding risk-factors determining susceptibility to C. albicans infection.
Resumo:
Transcription of the Bacillus anthracis structural genes for the anthrax toxin proteins and biosynthetic operon for capsule are positively regulated by AtxA, a transcription regulator with unique properties. Consistent with the role of atxA in virulence factor expression, a B. anthracis atxA-null mutant is avirulent in a murine model for anthrax. In batch culture, multiple signals impact atxA transcript levels, and the timing and steady state level of atxA expression is critical for optimal toxin and capsule synthesis. Despite the apparent complex control of atxA transcription, only one trans-acting protein, the transition state regulator AbrB, has been demonstrated to directly interact with the atxA promoter. The AbrB-binding site has been described, but additional cis-acting control sequences have not been defined. Using transcriptional lacZ fusions, electrophoretic mobility shift assays, and Western blot analysis, the cis-acting elements and trans-acting factors involved in regulation of atxA in B. anthracis strains containing either both virulence plasmids, pXO1 and pXO2, or only one plasmid, pXO1, were studied. This work demonstrates that atxA transcription from the major start site P1 is dependent upon a consensus sequence for the housekeeping sigma factor SigA, and an A+T-rich upstream element (UP-element) for RNA polymerase (RNAP). In addition, the data show that a trans-acting protein(s) other than AbrB negatively impacts atxA transcription when it binds specifically to a 9-bp palindrome within atxA promoter sequences located downstream of P1. Mutation of the palindrome prevents binding of the trans-acting protein(s) and results in a corresponding increase in AtxA and anthrax toxin production in a strain- and culture-dependent manner. The identity of the trans-acting repressor protein(s) remains elusive; however, phenotypes associated with mutation of the repressor binding site have revealed that the trans-acting repressor protein(s) indirectly controls B. anthracis development. Mutation of the repressor binding site results in misregulation and overexpression of AtxA in conditions conducive for development, leading to a marked sporulation defect that is both atxA- and pXO2-61-dependent. pXO2-61 is homologous to the sensor domain of sporulation sensor histidine kinases and is proposed to titrate an activating signal away from the sporulation phosphorelay when overexpressed by AtxA. These results indicate that AtxA is not only a master virulence regulator, but also a modulator of proper B. anthracis development. Also demonstrated in this work is the impact of the developmental regulators AbrB, Spo0A, and SigH on atxA expression and anthrax toxin production in a genetically incomplete (pXO1+, pXO2-) and genetically complete (pXO1+, pXO2+) strain background. AtxA and anthrax toxin production resulting from deletion of the developmental regulators are strain-dependent suggesting that factors on pXO2 are involved in control of atxA. The only developmental deletion mutant that resulted in a prominent and consistent strain-independent increase in AtxA protein levels was an abrB-null mutant. As a result of increased AtxA levels, there is early and increased production of anthrax toxins in an abrB-null mutant. In addition, the abrB-null mutant exhibited an increase in virulence in a murine model for anthrax. In contrast, virulence of the atxA promoter mutant was unaffected in a murine model for anthrax despite the production of 5-fold more AtxA than the abrB-null mutant. These results imply that AtxA is not the only factor impacting pathogenesis in an abrB-null mutant. Overall, this work highlights the complex regulatory network that governs expression of atxA and provides an additional role for AtxA in B. anthracis development.
Resumo:
In this dissertation, I discovered that function of TRIM24 as a co-activator of ERα-mediated transcriptional activation is dependent on specific histone modifications in tumorigenic human breast cancer-derived MCF7 cells. In the first part, I proved that TRIM24-PHD finger domain, which recognizes unmethylated histone H3 lysine K4 (H3K4me0), is critical for ERα-regulated transcription. Therefore, when LSD1-mediated demethylation of H3K4 is inhibited, activation of TRIM24-regulated ERα target genes is greatly impaired. Importantly, I demonstrated that TRIM24 and LSD1 are cyclically recruited to estrogen responsive elements (EREs) in a time-dependent manner upon estrogen induction, and depletion of their expression exert corresponding time-dependent effect on target gene activation. I also identified that phosphorylation of histone H3 threonine T6 disrupts TRIM24 from binding to the chromatin and from activating ERα-regulated targets. In the second part, I revealed that TRIM24 depletion has additive effect to LSD1 inhibitor- and Tamoxifen-mediated reduction in survival and proliferation in breast cancer cells.