957 resultados para Cumulative Residual
Resumo:
Dynamics of biomolecules over various spatial and time scales are essential for biological functions such as molecular recognition, catalysis and signaling. However, reconstruction of biomolecular dynamics from experimental observables requires the determination of a conformational probability distribution. Unfortunately, these distributions cannot be fully constrained by the limited information from experiments, making the problem an ill-posed one in the terminology of Hadamard. The ill-posed nature of the problem comes from the fact that it has no unique solution. Multiple or even an infinite number of solutions may exist. To avoid the ill-posed nature, the problem needs to be regularized by making assumptions, which inevitably introduce biases into the result.
Here, I present two continuous probability density function approaches to solve an important inverse problem called the RDC trigonometric moment problem. By focusing on interdomain orientations we reduced the problem to determination of a distribution on the 3D rotational space from residual dipolar couplings (RDCs). We derived an analytical equation that relates alignment tensors of adjacent domains, which serves as the foundation of the two methods. In the first approach, the ill-posed nature of the problem was avoided by introducing a continuous distribution model, which enjoys a smoothness assumption. To find the optimal solution for the distribution, we also designed an efficient branch-and-bound algorithm that exploits the mathematical structure of the analytical solutions. The algorithm is guaranteed to find the distribution that best satisfies the analytical relationship. We observed good performance of the method when tested under various levels of experimental noise and when applied to two protein systems. The second approach avoids the use of any model by employing maximum entropy principles. This 'model-free' approach delivers the least biased result which presents our state of knowledge. In this approach, the solution is an exponential function of Lagrange multipliers. To determine the multipliers, a convex objective function is constructed. Consequently, the maximum entropy solution can be found easily by gradient descent methods. Both algorithms can be applied to biomolecular RDC data in general, including data from RNA and DNA molecules.
Resumo:
BACKGROUND: The prevalence of residual shunt in patients after device closure of atrial septal defect and its impact on long-term outcome has not been previously defined. METHODS: From a prospective, single-institution registry of 408 patients, we selected individuals with agitated saline studies performed 1 year after closure. Baseline echocardiographic, invasive hemodynamic, and comorbidity data were compared to identify contributors to residual shunt. Survival was determined by review of the medical records and the Social Security Death Index. Survival analysis according to shunt included construction of Kaplan-Meier curves and Cox proportional hazards modeling. RESULTS: Among 213 analyzed patients, 27% were men and age at repair was 47 ± 17 years. Thirty patients (14%) had residual shunt at 1 year. Residual shunt was more common with Helex (22%) and CardioSEAL/STARFlex (40%) occluder devices than Amplatzer devices (9%; P = .005). Residual shunts were more common in whites (79% vs 46%, P = .004). At 7.3 ± 3.3 years of follow-up, 13 (6%) of patients had died, including 8 (5%) with Amplatzer, 5 (25%) with CardioSEAL/STARFlex, and 0 with Helex devices. Patients with residual shunting had a higher hazard of death (20% vs 4%, P = .001; hazard ratio 4.95 [1.59-14.90]). In an exploratory multivariable analysis, residual shunting, age, hypertension, coronary artery disease, and diastolic dysfunction were associated with death. CONCLUSIONS: Residual shunt after atrial septal defect device closure is common and adversely impacts long-term survival.
Resumo:
Quantitative and qualitative analyses of planktonic foraminiferal assemblages from 134 core-top sediment samples collected along the western Iberian margin were used to assess the latitudinal and longitudinal changes in surface water conditions and to calibrate a Sea Surface Temperature (SST) transfer function for this seasonal coastal upwelling region. Q-mode factor analysis performed on relative abundances yielded three factors that explain 96% of the total variance: factor 1 (50%) is exclusively defined by Globigerina bulloides, the most abundant and widespread species, and reflects the modern seasonal (May to September) coastal upwelling areas; factor 2 (32%) is dominated by Neogloboquadrina pachyderma (dextral) and Globorotalia inflata and seems to be associated with the Portugal Current, the descending branch of the North Atlantic Drift; factor 3 (14%) is defined by the tropical-sub-tropical species Globigerinoides ruber (white), Globigerinoides trilobus trilobus, and G. inflata and mirrors the influence of the winter-time eastern branch of the Azores Current. In conjunction with satellite-derived SST for summer and winter seasons integrated over an 18 year period the regional foraminiferal data set is used to calibrate a SST transfer function using Imbrie & Kipp, MAT and SIMMAX(ndw) techniques. Similar predicted errors (RMSEP), correlation coefficients, and residuals' deviation from SST estimated for both techniques were observed for both seasons. All techniques appear to underestimate SST off the southern Iberia margin, an area mainly occupied by warm waters where upwelling occurs only occasionally, and overestimate SST on the northern part of the west coast of the Iberia margin, where cold waters are present nearly all year round. The comparison of these regional calibrations with former Atlantic and North Atlantic calibrations for two cores, one of which is influenced by upwelling, reveals that the regional one attests more robust paleo-SSTs than for the other approaches.
Resumo:
Monitoring multiple myeloma patients for relapse requires sensitive methods to measure minimal residual disease and to establish a more precise prognosis. The present study aimed to standardize a real-time quantitative polymerase chain reaction (PCR) test for the IgH gene with a JH consensus self-quenched fluorescence reverse primer and a VDJH or DJH allele-specific sense primer (self-quenched PCR). This method was compared with allele-specific real-time quantitative PCR test for the IgH gene using a TaqMan probe and a JH consensus primer (TaqMan PCR). We studied nine multiple myeloma patients from the Spanish group treated with the MM2000 therapeutic protocol. Self-quenched PCR demonstrated sensitivity of >or=10(-4) or 16 genomes in most cases, efficiency was 1.71 to 2.14, and intra-assay and interassay reproducibilities were 1.18 and 0.75%, respectively. Sensitivity, efficiency, and residual disease detection were similar with both PCR methods. TaqMan PCR failed in one case because of a mutation in the JH primer binding site, and self-quenched PCR worked well in this case. In conclusion, self-quenched PCR is a sensitive and reproducible method for quantifying residual disease in multiple myeloma patients; it yields similar results to TaqMan PCR and may be more effective than the latter when somatic mutations are present in the JH intronic primer binding site.
Resumo:
BACKGROUND AND OBJECTIVES: Minimal residual disease (MRD) studies are useful in multiple myeloma (MM). However, the definition of the best technique and clinical utility are still unresolved issues. The aim of this study was to analyze and compare the clinical utility of MRD studies in MM with two different techniques: allelic-specific oligonucleotide real-time quantitative PCR (ASO-RQ-PCR), and flow cytometry (FCM). DESIGN AND METHODS: Bone marrow samples from 32 MM patients who had achieved complete response after transplantation were evaluated by ASO-RQ-PCR, using TaqMan technology, and multiparametric FCM. RESULTS: ASO-RQ-PCR was only applicable in 75% of patients for a variety of technical reasons, while FCM was applicable in up to 90%. Therefore, simultaneous PCR/FCM analysis was possible in only 24 patients. The number of residual tumor cells identified by both techniques was very similar (mean=0.29%, range=0.001-1.61%, correlation coefficient=0.861). However, RQ-PCR was able to detect residual myelomatous cells in 17 patients while FCM only did so in 11; thus, 6 cases were FCM negative but PCR positive, all of them displaying a very low number of clonal cells (median=0.014%, range=0.001-0.11). Using an MRD threshold of 0.01% (10(-4)) two risk groups with significantly different progression-free survival could be identified by either PCR (34 vs. 15m, p=0.04) or FCM (27 vs. 10m, p=0.05). INTERPRETATION AND CONCLUSIONS: Although MRD evaluation by ASO-RQ-PCR is slightly more sensitive and specific than FCM, it is applicable in a lower proportion of MM patients and is more time-consuming, while both techniques provide similar prognostic information.
Resumo:
The hypervariable regions of immunoglobulin heavy-chain (IgH) rearrangements provide a specific tumor marker in multiple myeloma (MM). Recently, real-time PCR assays have been developed in order to quantify the number of tumor cells after treatment. However, these strategies are hampered by the presence of somatic hypermutation (SH) in VDJH rearrangements from multiple myeloma (MM) patients, which causes mismatches between primers and/or probes and the target, leading to a nonaccurate quantification of tumor cells. Our group has recently described a 60% incidence of incomplete DJH rearrangements in MM patients, with no or very low rates of SH. In this study, we compare the efficiency of a real-time PCR approach for the analysis of both complete and incomplete IgH rearrangements in eight MM patients using only three JH consensus probes. We were able to design an allele-specific oligonucleotide for both the complete and incomplete rearrangement in all patients. DJH rearrangements fulfilled the criteria of effectiveness for real-time PCR in all samples (ie no unspecific amplification, detection of less than 10 tumor cells within 10(5) polyclonal background and correlation coefficients of standard curves higher than 0.98). By contrast, only three out of eight VDJH rearrangements fulfilled these criteria. Further analyses showed that the remaining five VDJH rearrangements carried three or more somatic mutations in the probe and primer sites, leading to a dramatic decrease in the melting temperature. These results support the use of incomplete DJH rearrangements instead of complete somatically mutated VDJH rearrangements for investigation of minimal residual disease in multiple myeloma.
Resumo:
This master thesis proposes a solution to the approach problem in case of unknown severe microburst wind shear for a fixed-wing aircraft, accounting for both longitudinal and lateral dynamics. The adaptive controller design for wind rejection is also addressed, exploiting the wind estimation provided by suitable estimators. It is able to successfully complete the final approach phase even in presence of wind shear, and at the same time aerodynamic envelope protection is retained. The adaptive controller for wind compensation has been designed by a backstepping approach and feedback linearization for time-varying systems. The wind shear components have been estimated by higher-order sliding mode schemes. At the end of this work the results are provided, an autonomous final approach in presence of microburst is discussed, performances are analyzed, and estimation of the microburst characteristics from telemetry data is examined.
Resumo:
A research project entitled "Residual Stresses and Fatigue Behavior of Welded Structural Members" was conducted at the Structural Research Laboratory of the Engineering Research Institute at Iowa State University under the sponsorship of the Iowa State Highway Commission. The objective of the project was to study experimentally the fatigue behavior of flange plates in welded beam sections as influenced by different residual stress distributions which are caused by different sizes of welds.
Resumo:
El artículo quiere a partir de un recuento crítico de los análisis tradicionales del ROI y del IR dar una mirada analítica a estos indicadores comparándolos entre sí, mirando su alcance e importancia reales, igualmente sus problemas conceptuales y limitaciones. Al final se introduce el EVA, como medida y filosofía, mirando lo novedoso de la misma y los aspectos comunescon el ROI y el IR.
Resumo:
PURPOSE: To evaluate quality of life in Portuguese patients with Systemic Lupus Erithematosus (SLE) and its correlation with disease activity and cumulative damage. METHODS: We included consecutive SLE patients, fulfilling the 1997 ACR Classification Criteria for SLE and followed at the Rheumatology Department of the University Hospital of Coimbra, Portugal at time of visit to the outpatient clinic. Quality of life was evaluated using the patient self-assessment questionnaire Medical Outcomes Survey Short Form-36 (SF-36) (validated Portuguese version). The consulting rheumatologist fulfilled the SLE associated indexes for cumulative damage (Systemic Lupus International Collaborating Clinics- Damage Index: SLICC/ACR-DI) and disease activity (Systemic Lupus Erythematosus Disease Activity Index: SLEDAI 2000). Correlation between SLEDAI and SLICC and SF-36 was tested with the Spearman Coefficient. Significant level considered was 0.05. RESULTS: The study included 133 SLE patients (90.2% female, mean age - 40.7 years, mean disease duration - 8.7 years). Most patients presented low disease activity (mean SLEDAI = 4.23) and limited cumulative damage (mean SLICC = 0.76). Despite that, SF-36 mean scores were below 70% in all eight domains of the index. Physical function domains showed lower scores than mental function domains. The QoL in this group of patients is significantly impaired when compared with the reference Portuguese population (p<0.05 in all domains). There was no correlation between clinical activity or cumulative damage and quality of life. CONCLUSION: QoL is significantly compromised in this group of SLE patients, but not related with disease activity or damage. These findings suggest that disease activity, cumulative damage and QoL are independent outcome measures and should all be used to assess the full impact of disease in SLE patients.
Resumo:
Biodiversity offsets are increasingly advocated as a flexible approach to managing the ecological costs of economic development. Arguably, however, this remains an area where policy-making has run ahead of science. A growing number of studies identify limitations of offsets in achieving ecologically sustainable outcomes, pointing to ethical and implementation issues that may undermine their effectiveness. We develop a novel system dynamic modelling framework to analyze the no net loss objective of development and biodiversity offsets. The modelling framework considers a marine-based example, where resource abundance depends on a habitat that is affected by a sequence of development projects, and biodiversity offsets are understood as habitat restoration actions. The model is used to explore the implications of four alternative offset management strategies for a regulator, which differ in how net loss is measured, and whether and how the cumulative impacts of development are considered. Our results confirm that, when it comes to offsets as a conservation tool, the devil lies in the details. Approaches to determining the magnitude of offsets required, as well as their timing and allocation among multiple developers, can result in potentially complex and undesired sets of economic incentives, with direct impacts on the ability to meet the overall objective of ecologically sustainable development. The approach and insights are of direct interest to conservation policy design in a broad range of marine and coastal contexts.
Resumo:
Nonlinear thermo-mechanical properties of advanced polymers are crucial to accurate prediction of the process induced warpage and residual stress of electronics packages. The Fiber Bragg grating (FBG) sensor based method is advanced and implemented to determine temperature and time dependent nonlinear properties. The FBG sensor is embedded in the center of the cylindrical specimen, which deforms together with the specimen. The strains of the specimen at different loading conditions are monitored by the FBG sensor. Two main sources of the warpage are considered: curing induced warpage and coefficient of thermal expansion (CTE) mismatch induced warpage. The effective chemical shrinkage and the equilibrium modulus are needed for the curing induced warpage prediction. Considering various polymeric materials used in microelectronic packages, unique curing setups and procedures are developed for elastomers (extremely low modulus, medium viscosity, room temperature curing), underfill materials (medium modulus, low viscosity, high temperature curing), and epoxy molding compound (EMC: high modulus, high viscosity, high temperature pressure curing), most notably, (1) zero-constraint mold for elastomers; (2) a two-stage curing procedure for underfill materials and (3) an air-cylinder based novel setup for EMC. For the CTE mismatch induced warpage, the temperature dependent CTE and the comprehensive viscoelastic properties are measured. The cured cylindrical specimen with a FBG sensor embedded in the center is further used for viscoelastic property measurements. A uni-axial compressive loading is applied to the specimen to measure the time dependent Young’s modulus. The test is repeated from room temperature to the reflow temperature to capture the time-temperature dependent Young’s modulus. A separate high pressure system is developed for the bulk modulus measurement. The time temperature dependent bulk modulus is measured at the same temperatures as the Young’s modulus. The master curve of the Young’s modulus and bulk modulus of the EMC is created and a single set of the shift factors is determined from the time temperature superposition. The supplementary experiments are conducted to verify the validity of the assumptions associated with the linear viscoelasticity. The measured time-temperature dependent properties are further verified by a shadow moiré and Twyman/Green test.