964 resultados para Cuiaba (MT)
Resumo:
Feeding and vocal behaviours of wild black gibbons (Hylobates concolor) were observed from 1987 to 1989 in south-western Yunnan, notably H. concolor jingdongensis at Mt. Wuliang (24-degrees 18-42'N, 100-degrees 30-50'E) in the early spring of 1989. 12 plant species were observed to have been eaten by the gibbons; these included tree species, lianas and epiphytes. Approximately 21 % of feeding time was devoted to eating fruits, 61 % to leaf buds and shoots, 7 % to flowers and 11 % to leaves. The gibbons preferred fruits to leaves even though they commonly ate leaves. In this study, the morning songs (duet and solo), reponsive (territorial) songs, alarm calls and communication calls were recorded. The gibbons sang their morning songs mainly in the early morning, with a single bout lasting more than 10 min on average. The singing of a group would trigger other groups, and all groups in an area tended to sing sequentially. The morning duet song bout was dominated by an adult male. The male emitted booms, aa notes, early multimodulated figures, intermediate multimodulated figures and codas, the latter occurring only in duets following the female's great call. The female uttered great calls and abortive great calls. The subadults or juveniles also took part in the morning songs. Lone males were heard to utter solos which lasted longer than the duets of the pairs.
Resumo:
Event-sampling and scans were used for collecting data on male-infant-male triadic interactions, and their effects on member spacing respectively in a group of Macaca thibetana at Mt. Emei in 1989. The group was partially provisioned by human visitors in seasons other than winter, and could be observed closely. In addition, a stable linear male-hierarchy among five males existed for two years since the end of 1987, providing a good social condition for this topic. The triadic interactions were specific to the birth season, and recognized as three types being on a continuum functionally changing from passive ''agonistic buffering'' (4.8%) to active spatial cohesion, which resulted in a significant decline of intermale distances. Positive correlations were documented between the triad initiation rate and the number of females in consort with the males in the mating season (MS), and between the triad reception rate and the number of infants in proximity to the males in the MS when maternal care was significantly reduced. Thus the male's mating effort and kin/sexual selection may deeply be involved in the triad of this species. Considering that the two triad-species, M. sylvanus and M. thibetana, had different levels of paternity, but shared similar foraging conditions, and showed similar intensities of male-infant caretaking, the triad was very likely a byproduct of male-infant caretaking, which was probably shaped to compensate heavy maternal investment to young offspring in harsh conditions. Accordingly, the long-term arguments about the triad in M. sylvanus can be united to a model of the way in which ''male-infant caretaking'' hypothesis works ultimately, and ''regulating social relations'' hypothesis does proximately.
Resumo:
We present a video-based system which interactively captures the geometry of a 3D object in the form of a point cloud, then recognizes and registers known objects in this point cloud in a matter of seconds (fig. 1). In order to achieve interactive speed, we exploit both efficient inference algorithms and parallel computation, often on a GPU. The system can be broken down into two distinct phases: geometry capture, and object inference. We now discuss these in further detail. © 2011 IEEE.
Resumo:
This paper presents a method for vote-based 3D shape recognition and registration, in particular using mean shift on 3D pose votes in the space of direct similarity transforms for the first time. We introduce a new distance between poses in this spacethe SRT distance. It is left-invariant, unlike Euclidean distance, and has a unique, closed-form mean, in contrast to Riemannian distance, so is fast to compute. We demonstrate improved performance over the state of the art in both recognition and registration on a real and challenging dataset, by comparing our distance with others in a mean shift framework, as well as with the commonly used Hough voting approach. © 2011 IEEE.
Resumo:
We present electronically controlled field emission characteristics of arrays of individually ballasted carbon nanotubes synthesized by plasma-enhanced chemical vapor deposition on silicon-on-insulator substrates. By adjusting the source-drain potential we have demonstrated the ability to controllable limit the emission current density by more than 1 order of magnitude. Dynamic control over both the turn-on electric field and field enhancement factor have been noted. A hot electron model is presented. The ballasted nanotubes are populated with hot electrons due to the highly crystalline Si channel and the high local electric field at the nanotube base. This positively shifts the Fermi level and results in a broad energy distribution about this mean, compared to the narrow spread, lower energy thermalized electron population in standard metallic emitters. The proposed vertically aligned carbon nanotube field-emitting electron source offers a viable platform for X-ray emitters and displays applications that require accurate and highly stable control over the emission characteristics.
Resumo:
One-dimensional ferroelectric nanostructures, carbon nanotubes (CNT) and CNTinorganic oxides have recently been studied due to their potential applications for microelectronics. Here, we report coating of a registered array of aligned multi-wall carbon nanotubes (MWCNT) grown on silicon substrates by functional ferroelectric Pb(Zr,Ti)O 3 (PZT) which produces structures suitable for commercial prototype memories. Microstructural analysis reveals the crystalline nature of PZT with small nanocrystals aligned in different directions. First-order Raman modes of MWCNT and PZT/MWCNT/n-Si show the high structural quality of CNT before and after PZT deposition at elevated temperature. PZT exists mostly in the monoclinic Cc/Cm phase, which is the origin of the high piezoelectric response in the system. Lowloss square piezoelectric hysteresis obtained for the 3D bottom-up structure confirms the switchability of the device. Currentvoltage mapping of the device by conducting atomic force microscopy (c-AFM) indicates very low transient current. Fabrication and functional properties of these hybrid ferroelectriccarbon nanotubes is the first step towards miniaturization for future nanotechnology sensors, actuators, transducers and memory devices. © 2012 IOP Publishing Ltd.
Resumo:
Thin-film electronics in its myriad forms has underpinned much of the technological innovation in the fields of displays, sensors, and energy conversion over the past four decades. This technology also forms the basis of flexible electronics. Here we review the current status of flexible electronics and attempt to predict the future promise of these pervading technologies in healthcare, environmental monitoring, displays and human-machine interactivity, energy conversion, management and storage, and communication and wireless networks. © 2012 IEEE.
Resumo:
Large area uniform nanocrystalline graphene is grown by chemical vapor deposition on arbitrary insulating substrates that can survive ∼1000°C. The as-synthesized graphene is nanocrystalline with a domain size in the order of ∼10 nm. The material possesses a transparency and conductivity similar to standard graphene fabricated by exfoliation or catalysis. A noncatalytic mechanism is proposed to explain the experimental phenomena. The developed technique is scalable and reproducible, compatible with the existing semiconductor technology, and thus can be very useful in nanoelectronic applications such as transparent electronics, nanoelectromechanical systems, as well as molecular electronics. © 2012 IEEE.
Resumo:
We report on an inexpensive, facile and industry viable carbon nanofibre catalyst activation process achieved by exposing stainless steel mesh to an electrolyzed metal etchant. The surface evolution of the catalyst islands combines low-rate electroplating and substrate dissolution. The plasma enhanced chemical vapour deposited carbon nanofibres had aspect-ratios > 150 and demonstrated excellent height and crystallographic uniformity with localised coverage. The nanofibres were well-aligned with spacing consistent with the field emission nearest neighbour electrostatic shielding criteria, without the need of any post-growth processing. Nanofibre inclusion significantly reduced the emission threshold field from 4.5 V/μm (native mesh) to 2.5 V/μm and increased the field enhancement factor to approximately 7000. © 2011 Elsevier B.V. All rights reserved.