878 resultados para Control performance
Resumo:
'Profusion Cherry' is a dwarf zinnia with prospect for pot use in Brazil. The success of flowering potted plants depends on its performance during transport and on the period of time that it performs well indoors. Benzyladenine application may retard leaf and flower senescence, increasing postproduction longevity and quality. Senescent flowers removal by consumers, to give a fresh appearance to home flowering potted plant, could influence source-sink relationship and postproduction. This study evaluated the effect of benzyladenine and senescent flowers removal on postproduction performance of 'Profusion Cherry', and observed the senescence symptoms. When plants, produced in greenhouse at São Paulo State, Brazil, had 4 to 5 open flowers, they were sprayed to runoff a single time (20ml/pot) with benzyladenine (0.4, 0.6, 0.8 or 1.0 mmol) and placed into plastic trays, without sleeve. The experimental design was a randomized blocks with 6 treatments (control, four benzyladenine concentrations and senescent flowers removal), 4 replications (2 pots per experimental unit), totalising 12 potted plants in each plastic tray (block). To simulate highway transport, plants remained for 4 days in a dark chamber, at 20.0 °C without irrigation. To include vibration, each plastic tray, was placed in an incubator shaker for 3hr a day, at 60 rpm, 25°C and darkness. After simulated transport, plants remained indoors (10h.day-1 with 18 μmol.m-2.s-1 PPF, 21.5 to 27.0°C and, 14 h.day-1 at darkness, 18.5 to 24.0°C) during 21 days. Plants performed well during simulated transport, and also indoors for two weeks. For most of evaluated parameters there was not significant effect of benzyladenine concentrations by Tukey's test. Senescent flowers removal did not delayed senescence or improved plants quality. The symptoms associated with the loss of decorative life were ray florets color fading and wilting, without abscission of flowers or petals.
Resumo:
A specific and sensitive high-performance liquid chromatographic method was developed for the assay of praziquantel in raw materials and tablets. It was also found that the excipients in the commercial tablet preparation did not interfere with the assay in the wavelenght selected. The method validation yielded good results and included the range, linearity, precision, accuracy, specificity and recovery.
Resumo:
With the fast innovation of the hardware and software technologies using rapid prototyping devices, with application in the robotics and automation, more and more it becomes necessary the development of applications based on methodologies that facilitate future modifications, updates and enhancements in the original projected system. This paper presents a conception of mobile robots using rapid prototyping, distributing the several control actions in growing levels of complexity and using resources of reconfigurable computing proposal oriented to embed systems implementation. Software and the hardware are structuralized in independents blocks, with connection through common bus. The study and applications of new structures control that permits good performance in relation to the parameter variations. This kind of controller can be tested on different platform representing the wheeled mobile robots using reprogrammable logic components (FPGA). © 2006 IEEE.
Resumo:
The study of algorithms for active vibrations control in flexible structures became an area of enormous interest, mainly due to the countless demands of an optimal performance of mechanical systems as aircraft, aerospace and automotive structures. Smart structures, formed by a structure base, coupled with piezoelectric actuators and sensor are capable to guarantee the conditions demanded through the application of several types of controllers. The actuator/sensor materials are composed by piezoelectric ceramic (PZT - Lead Zirconate Titanate), commonly used as distributed actuators, and piezoelectric plastic films (PVDF-PolyVinyliDeno Floride), highly indicated for distributed sensors. The design process of such system encompasses three main phases: structural design; optimal placement of sensor/actuator (PVDF and PZT); and controller design. Consequently, for optimal design purposes, the structure, the sensor/actuator placement and the controller have to be considered simultaneously. This article addresses the optimal placement of actuators and sensors for design of controller for vibration attenuation in a flexible plate. Techniques involving linear matrix inequalities (LMI) to solve the Riccati's equation are used. The controller's gain is calculated using the linear quadratic regulator (LQR). The major advantage of LMI design is to enable specifications such as stability degree requirements, decay rate, input force limitation in the actuators and output peak bounder. It is also possible to assume that the model parameters involve uncertainties. LMI is a very useful tool for problems with constraints, where the parameters vary in a range of values. Once formulated in terms of LMI a problem can be solved efficiently by convex optimization algorithms.
Resumo:
The study of algorithms for active vibration control in flexible structures became an area of enormous interest for some researchers due to the innumerable requirements for better performance in mechanical systems, as for instance, aircrafts and aerospace structures. Intelligent systems, constituted for a base structure with sensors and actuators connected, are capable to guarantee the demanded conditions, through the application of diverse types of controllers. For the project of active controllers it is necessary, in general, to know a mathematical model that enable the representation in the space of states, preferential in modal coordinates to permit the truncation of the system and reduction in the order of the controllers. For practical applications of engineering, some mathematical models based in discrete-time systems cannot represent the physical problem, therefore, techniques of identification of system parameters must be used. The techniques of identification of parameters determine the unknown values through the manipulation of the input (disturbance) and output (response) signals of the system. Recently, some methods have been proposed to solve identification problems although, none of them can be considered as being universally appropriate to all the situations. This paper is addressed to an application of linear quadratic regulator controller in a structure where the damping, stiffness and mass matrices were identified through Chebyshev's polynomial functions.
Resumo:
In this article, we evaluate the performance of the T2 chart based on the principal components (PC chart) and the simultaneous univariate control charts based on the original variables (SU X̄ charts) or based on the principal components (SUPC charts). The main reason to consider the PC chart lies on the dimensionality reduction. However, depending on the disturbance and on the way the original variables are related, the chart is very slow in signaling, except when all variables are negatively correlated and the principal component is wisely selected. Comparing the SU X̄, the SUPC and the T 2 charts we conclude that the SU X̄ charts (SUPC charts) have a better overall performance when the variables are positively (negatively) correlated. We also develop the expression to obtain the power of two S 2 charts designed for monitoring the covariance matrix. These joint S2 charts are, in the majority of the cases, more efficient than the generalized variance |S| chart.
Resumo:
Automotive parts manufacture by machining process using silicon nitride-based ceramic tool development in Brazil already is a reality. Si 3N4-based ceramic cutting tools offer a high productivity due to their excellent hot hardness, which allows high cutting speeds. Under such conditions the cutting tool must be resistant to a combination of mechanical, thermal and chemical attacks. Silicon nitride based ceramic materials constitute a mature technology with a very broad base of current and potential applications. The best opportunities for Si3N 4-based ceramics include ballistic armor, composite automotive brakes, diesel particulate filters, joint replacement products and others. The goal of this work was to show latter advance in silicon nitride manufacture and its recent evolution on machining process of gray cast iron, compacted graphite iron and Ti-6Al-4V. Materials characterization and machining tests were analyzed by X-Ray Diffraction, Scanning Electron Microscopy, Vickers hardness and toughness fracture and technical norm. In recent works the authors has been proved to advance in microstructural, mechanical and physic properties control. These facts prove that silicon nitride-based ceramic has enough resistance to withstand the impacts inherent to the machining of gray cast iron (CI), compacted graphite iron (CGI) and Ti-6Al-4V (6-4). Copyright © 2008 SAE International.
Resumo:
The recent years have seen the appearance of innovative system for acoustic and vibration attenuation, most of them integrating new actuator technologies. In this sense, the study of algorithms for active vibrations control in rotating machinery became an area of enormous interest, mainly due to countless demands of an optimal performance of mechanical systems in aircraft, aerospace and automotive structures. In this way, this paper presents an approach that is numerically verified for active vibration control in a rotor using Active Magnetic Bearings (AMB). The control design in a discrete state-space formulation is carried out through feedback technique and Linear Matrix Inequalities (LMI) approach. LMI is useful for system with uncertainties. The AMB uses electromagnetic forces to support a rotor without mechanical contact. By monitoring the position of the shaft and changing the dynamics of the system accordingly, the AMB keeps the rotor in a desired position. This unique feature has broadened for the applications of AMB and now they can be considered not only as a main support bearing in a machine but also as dampers for vibration control and force actuators. © 2009 Society for Experimental Mechanics Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper is concerned with the use of distributed vibration neutralisers to control the transmission of flexural waves on a beam. Of particular interest is an array of beam-like neutralisers and a continuous plate-like neutraliser. General expressions for wave transmission and reflection metrics either side of the distributed neutralisers are derived. Based on transmission efficiency, the characteristics of multiple neutralisers are investigated in terms of the minimum transmission efficiency, the normalised bandwidth and the shape factor, allowing optimisation of their performance. Analytical results show that the band-stop property of the neutraliser array depends on various factors, including the neutraliser damping, mass, separation distance in the array and the moment arm of each neutraliser. Moreover, it is found that the particular attachment configuration of an uncoupled forcemoment-type neutraliser can be used to improve their overall performance. It is also shown that in the limit of many neutralisers in the array, the performance tends to that of a continuous neutraliser. © 2011 Elsevier Ltd.
Resumo:
This paper presents a control method for a class of continuous-time switched systems, using state feedback variable structure controllers. The method is applied to the control of a two-cell dc-dc buck converter and a control circuit design using the software PSpice is proposed. The design is based on Lyapunov-Metzler-SPR systems and the performance of the resulting control system is superior to that afforded by a recently-proposed alternative sliding-mode control technique. The dc-dc power converters are very used in industrial applications, for instance, in power systems of hybrid electric vehicles and aircrafts. Good results were obtained and the proposed design is also inexpensive because it uses electric components that can be easily found for the hardware implementation. Future researches on the subject include the hardware validation of the dc-dc converter controller and the robust control design of switched systems, with structural failures. © 2011 IEEE.
Resumo:
This paper presents a control method for a class of continuous-time switched systems, using state feedback variable structure controllers. The method is applied to the control of a non-trivial dc-dc power converter and a simple and inexpensive control circuit design, that was simulated using the software PSpice, is proposed. The design is based on Lyapunov-Metzler-SPR systems and the performance of the resulting control system is superior to that afforded by a recently proposed alternative sliding-mode control technique. © 2011 IFAC.
Resumo:
This paper deals with the problem of establishing stabilizing state-dependent switching laws in DC-DC converters operating at continuous conduction mode (CCM) and comparing their performance indexes. Firstly, the nature of the problem is defined, that is, the study of switched affine systems, which may not share a common equilibrium point. The concept of stability is, therefore, broadened. Then, the central theorem is proposed, from which a family of switching laws can be derived, namely the minimum law and the hold state law. Some of these are proved to stabilize the basic DC-DC converters and then, their performances are compared to another law, from a previous work, by simulation, where a great reduction in overshoot is obtained. © 2011 IEEE.
Resumo:
Single Limb Stance under visual and proprioceptive disturbances is largely used in clinical settings in order to improve balance in a wide range of functional disabilities. However, the proper role of vision and proprioception in SLS is not completely understood. The objectives of this study were to test the hypotheses that when ankle proprioception is perturbed, the role of vision in postural control increases according to the difficulty of the standing task. And to test the effect of vision during postural adaptation after withdrawal of the somesthetic perturbation during double and single limb stance. Eleven males were submitted to double (DLS) and single limb (SLS) stances under conditions of normal or reduced vision, both with normal and perturbed proprioception. Center of pressure parameters were analyzed across conditions. Vision had a main effect in SLS, whereas proprioception perturbation showed effects only during DLS. Baseline stability was promptly achieved independently of visual input after proprioception reintegration. In conclusion, the role of vision increases in SLS. After proprioception reintegration, vision does not affect postural recovery. Balance training programs must take that into account. © 2011 Elsevier Ltd.
Resumo:
A current trend in the agricultural area is the development of mobile robots and autonomous vehicles for precision agriculture (PA). One of the major challenges in the design of these robots is the development of the electronic architecture for the control of the devices. In a joint project among research institutions and a private company in Brazil a multifunctional robotic platform for information acquisition in PA is being designed. This platform has as main characteristics four-wheel propulsion and independent steering, adjustable width, span of 1,80m in height, diesel engine, hydraulic system, and a CAN-based networked control system (NCS). This paper presents a NCS solution for the platform guidance by the four-wheel hydraulic steering distributed control. The control strategy, centered on the robot manipulators control theory, is based on the difference between the desired and actual position and considering the angular speed of the wheels. The results demonstrate that the NCS was simple and efficient, providing suitable steering performance for the platform guidance. Even though the simplicity of the NCS solution developed, it also overcame some verified control challenges in the robot guidance system design such as the hydraulic system delay, nonlinearities in the steering actuators, and inertia in the steering system due the friction of different terrains. Copyright © 2012 Eduardo Pacincia Godoy et al.