991 resultados para Conditional Gaussian Networks
Resumo:
In this paper we study the reconstruction of a network topology from the values of its betweenness centrality, a measure of the influence of each of its nodes in the dissemination of information over the network. We consider a simple metaheuristic, simulated annealing, as the combinatorial optimization method to generate the network from the values of the betweenness centrality. We compare the performance of this technique when reconstructing different categories of networks –random, regular, small-world, scale-free and clustered–. We show that the method allows an exact reconstruction of small networks and leads to good topological approximations in the case of networks with larger orders. The method can be used to generate a quasi-optimal topology fora communication network from a list with the values of the maximum allowable traffic for each node.
Resumo:
This paper deals with the goodness of the Gaussian assumption when designing second-order blind estimationmethods in the context of digital communications. The low- andhigh-signal-to-noise ratio (SNR) asymptotic performance of the maximum likelihood estimator—derived assuming Gaussiantransmitted symbols—is compared with the performance of the optimal second-order estimator, which exploits the actualdistribution of the discrete constellation. The asymptotic study concludes that the Gaussian assumption leads to the optimalsecond-order solution if the SNR is very low or if the symbols belong to a multilevel constellation such as quadrature-amplitudemodulation (QAM) or amplitude-phase-shift keying (APSK). On the other hand, the Gaussian assumption can yield importantlosses at high SNR if the transmitted symbols are drawn from a constant modulus constellation such as phase-shift keying (PSK)or continuous-phase modulations (CPM). These conclusions are illustrated for the problem of direction-of-arrival (DOA) estimation of multiple digitally-modulated signals.
Resumo:
Broadcast transmission mode in ad hoc networks is critical to manage multihop routing or providing medium accesscontrol (MAC)-layer fairness. In this paper, it is shown that ahigher capacity to exchange information among neighbors may beobtained through a physical-MAC cross-layer design of the broadcastprotocol exploiting signal separation principles. Coherentdetection and separation of contending nodes is possible throughtraining sequences which are selected at random from a reducedset. Guidelines for the design of this set are derived for a lowimpact on the network performance and the receiver complexity.
Resumo:
This paper is concerned with the derivation of new estimators and performance bounds for the problem of timing estimation of (linearly) digitally modulated signals. The conditional maximum likelihood (CML) method is adopted, in contrast to the classical low-SNR unconditional ML (UML) formulationthat is systematically applied in the literature for the derivationof non-data-aided (NDA) timing-error-detectors (TEDs). A new CML TED is derived and proved to be self-noise free, in contrast to the conventional low-SNR-UML TED. In addition, the paper provides a derivation of the conditional Cramér–Rao Bound (CRB ), which is higher (less optimistic) than the modified CRB (MCRB)[which is only reached by decision-directed (DD) methods]. It is shown that the CRB is a lower bound on the asymptotic statisticalaccuracy of the set of consistent estimators that are quadratic with respect to the received signal. Although the obtained boundis not general, it applies to most NDA synchronizers proposed in the literature. A closed-form expression of the conditional CRBis obtained, and numerical results confirm that the CML TED attains the new bound for moderate to high Eg/No.
Resumo:
The well-known structure of an array combiner along with a maximum likelihood sequence estimator (MLSE) receiveris the basis for the derivation of a space-time processor presentinggood properties in terms of co-channel and intersymbol interferencerejection. The use of spatial diversity at the receiver front-endtogether with a scalar MLSE implies a joint design of the spatialcombiner and the impulse response for the sequence detector. Thisis faced using the MMSE criterion under the constraint that thedesired user signal power is not cancelled, yielding an impulse responsefor the sequence detector that is matched to the channel andcombiner response. The procedure maximizes the signal-to-noiseratio at the input of the detector and exhibits excellent performancein realistic multipath channels.
Resumo:
We propose new methods for evaluating predictive densities that focus on the models' actual predictive ability in finite samples. The tests offer a simple way of evaluatingthe correct specification of predictive densities, either parametric or non-parametric.The results indicate that our tests are well sized and have good power in detecting mis-specification in predictive densities. An empirical application to the Survey ofProfessional Forecasters and a baseline Dynamic Stochastic General Equilibrium modelshows the usefulness of our methodology.
Resumo:
What determines which inputs are initially considered and eventually adopted in the productionof new or improved goods? Why are some inputs much more prominent than others? We modelthe evolution of input linkages as a process where new producers first search for potentially usefulinputs and then decide which ones to adopt. A new product initially draws a set of 'essentialsuppliers'. The search stage is then confined to the network neighborhood of the latter, i.e., to theinputs used by the essential suppliers. The adoption decision is driven by a tradeoff between thebenefits accruing from input variety and the costs of input adoption. This has important implicationsfor the number of forward linkages that a product (input variety) develops over time. Inputdiffusion is fostered by network centrality ? an input that is initially represented in many networkneighborhoods is subsequently more likely to be adopted. This mechanism also delivers a powerlaw distribution of forward linkages. Our predictions continue to hold when varieties are aggregatedinto sectors. We can thus test them, using detailed sectoral US input-output tables. We showthat initial network proximity of a sector in 1967 significantly increases the likelihood of adoptionthroughout the subsequent four decades. The same is true for rapid productivity growth in aninput-producing sector. Our empirical results highlight two conditions for new products to becomecentral nodes: initial network proximity to prospective adopters, and technological progress thatreduces their relative price. Semiconductors met both conditions.
Resumo:
The increasing interest aroused by more advanced forecasting techniques, together with the requirement for more accurate forecasts of tourismdemand at the destination level due to the constant growth of world tourism, has lead us to evaluate the forecasting performance of neural modelling relative to that of time seriesmethods at a regional level. Seasonality and volatility are important features of tourism data, which makes it a particularly favourable context in which to compare the forecasting performance of linear models to that of nonlinear alternative approaches. Pre-processed official statistical data of overnight stays and tourist arrivals fromall the different countries of origin to Catalonia from 2001 to 2009 is used in the study. When comparing the forecasting accuracy of the different techniques for different time horizons, autoregressive integrated moving average models outperform self-exciting threshold autoregressions and artificial neural network models, especially for shorter horizons. These results suggest that the there is a trade-off between the degree of pre-processing and the accuracy of the forecasts obtained with neural networks, which are more suitable in the presence of nonlinearity in the data. In spite of the significant differences between countries, which can be explained by different patterns of consumer behaviour,we also find that forecasts of tourist arrivals aremore accurate than forecasts of overnight stays.
Resumo:
Les approches multimodales dans l'imagerie cérébrale non invasive sont de plus en plus considérées comme un outil indispensable pour la compréhension des différents aspects de la structure et de la fonction cérébrale. Grâce aux progrès des techniques d'acquisition des images de Resonance Magnetique et aux nouveaux outils pour le traitement des données, il est désormais possible de mesurer plusieurs paramètres sensibles aux différentes caractéristiques des tissues cérébraux. Ces progrès permettent, par exemple, d'étudier les substrats anatomiques qui sont à la base des processus cognitifs ou de discerner au niveau purement structurel les phénomènes dégénératifs et développementaux. Cette thèse met en évidence l'importance de l'utilisation d'une approche multimodale pour étudier les différents aspects de la dynamique cérébrale grâce à l'application de cette approche à deux études cliniques: l'évaluation structurelle et fonctionnelle des effets aigus du cannabis fumé chez des consommateurs réguliers et occasionnels, et l'évaluation de l'intégrité de la substance grise et blanche chez des jeunes porteurs de la prémutations du gène FMR1 à risque de développer le FXTAS (Fragile-X Tremor Ataxia Syndrome). Nous avons montré que chez les fumeurs occasionnels de cannabis, même à faible concentration du principal composant psychoactif (THC) dans le sang, la performance lors d'une tâche visuo-motrice est fortement diminuée, et qu'il y a des changements dans l'activité des trois réseaux cérébraux impliqués dans les processus cognitifs: le réseau de saillance, le réseau du contrôle exécutif, et le réseau actif par défaut (Default Mode). Les sujets ne sont pas en mesure de saisir les saillances dans l'environnement et de focaliser leur attention sur la tâche. L'augmentation de la réponse hémodynamique dans le cortex cingulaire antérieur suggère une augmentation de l'activité introspective. Une investigation des ef¬fets au niveau cérébral d'une exposition prolongée au cannabis, montre des changements persistants de la substance grise dans les régions associées à la mémoire et au traitement des émotions. Le niveau d'atrophie dans ces structures corrèle avec la consommation de cannabis au cours des trois mois précédant l'étude. Dans la deuxième étude, nous démontrons des altérations structurelles des décennies avant l'apparition du syndrome FXTAS chez des sujets jeunes, asymptomatiques, et porteurs de la prémutation du gène FMR1. Les modifications trouvées peuvent être liées à deux mécanismes différents. Les altérations dans le réseau moteur du cervelet et dans la fimbria de l'hippocampe, suggèrent un effet développemental de la prémutation. Elles incluent aussi une atrophie de la substance grise du lobule VI du cervelet et l'altération des propriétés tissulaires de la substance blanche des projections afférentes correspondantes aux pédoncules cérébelleux moyens. Les lésions diffuses de la substance blanche cérébrale peu¬vent être un marquer précoce du développement de la maladie, car elles sont liées à un phénomène dégénératif qui précède l'apparition des symptômes du FXTAS. - Multimodal brain imaging is becoming a leading tool for understanding different aspects of brain structure and function. Thanks to the advances in Magnetic Resonance imaging (MRI) acquisition schemes and data processing techniques, it is now possible to measure different parameters sensitive to different tissue characteristics. This allows for example to investigate anatomical substrates underlying cognitive processing, or to disentangle, at a pure structural level degeneration and developmental processes. This thesis highlights the importance of using a multimodal approach for investigating different aspects of brain dynamics by applying this approach to two clinical studies: functional and structural assessment of the acute effects of cannabis smoking in regular and occasional users, and grey and white matter assessment in young FMR1 premutation carriers at risk of developing FXTAS. We demonstrate that in occasional smokers cannabis smoking, even at low concentration of the main psychoactive component (THC) in the blood, strongly decrease subjects' performance on a visuo-motor tracking task, and globally alters the activity of the three brain networks involved in cognitive processing: the Salience, the Control Executive, and the Default Mode networks. Subjects are unable to capture saliences in the environment and to orient attention to the task; the increase in Hemodynamic Response in the Anterior Cingulate Cortex suggests an increase in self-oriented mental activity. A further investigation on long term exposure to cannabis, shows a persistent grey matter modification in brain regions associated with memory and affective processing. The degree of atrophy in these structures also correlates with the estimation of drug use in the three months prior the participation to the study. In the second study we demonstrate structural changes in young asymptomatic premutation carriers decades before the onset of FXTAS that might be related to two different mechanisms. Alteration of the cerebellar motor network and of the hippocampal fimbria/ fornix, may reflect a potential neurodevelopmental effect of the premutation. These include grey matter atrophy in lobule VI and modification of white matter tissue property in the corresponding afferent projections through the Middle Cerebellar Peduncles. Diffuse hemispheric white matter lesions that seem to appear closer to the onset of FXTAS and be related to a neurodegenerative phenomenon may mark the imminent onset of FXTAS.
Resumo:
This study focuses on the status of using the Internet in partnership development. The aim is to find out howthe parties in partnership can benefit from the available data networks (the Internet, Intranet and Extranet). The study also explains what the typical practices at the moment are and what features might be exploitable in the future. The research problem is to find out whether there are any possibilities to utilize the web more than is done at the moment. This study is a preliminary study for a more extensive study on the topic 'Information Technology in Business Relationships'.
Resumo:
Wireless Sensor Networks (WSN) are formed by nodes with limited computational and power resources. WSNs are finding an increasing number of applications, both civilian and military, most of which require security for the sensed data being collected by the base station from remote sensor nodes. In addition, when many sensor nodes transmit to the base station, the implosion problem arises. Providing security measures and implosion-resistance in a resource-limited environment is a real challenge. This article reviews the aggregation strategies proposed in the literature to handle the bandwidth and security problems related to many-to-one transmission in WSNs. Recent contributions to secure lossless many-to-one communication developed by the authors in the context of several Spanish-funded projects are surveyed. Ongoing work on the secure lossy many-to-one communication is also sketched.
Resumo:
Many classification systems rely on clustering techniques in which a collection of training examples is provided as an input, and a number of clusters c1,...cm modelling some concept C results as an output, such that every cluster ci is labelled as positive or negative. Given a new, unlabelled instance enew, the above classification is used to determine to which particular cluster ci this new instance belongs. In such a setting clusters can overlap, and a new unlabelled instance can be assigned to more than one cluster with conflicting labels. In the literature, such a case is usually solved non-deterministically by making a random choice. This paper presents a novel, hybrid approach to solve this situation by combining a neural network for classification along with a defeasible argumentation framework which models preference criteria for performing clustering.