899 resultados para Computer Modelling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anatomy and microstructure of the spine and in particular the intervertebral disc are intimately linked to how they operate in vivo and how they distribute loads to the adjacent musculature and bony anatomy. The degeneration of the intervertebral discs may be characterised by a loss of hydration, loss of disc height, a granular texture and the presence of annular lesions. As such, degeneration of the intervertebral discs compromises the mechanical integrity of their components and results in adaption and modification in the mechanical means by which loads are distributed between adjacent spinal motion segments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Business process modeling has undoubtedly emerged as a popular and relevant practice in Information Systems. Despite being an actively researched field, anecdotal evidence and experiences suggest that the focus of the research community is not always well aligned with the needs of industry. The main aim of this paper is, accordingly, to explore the current issues and the future challenges in business process modeling, as perceived by three key stakeholder groups (academics, practitioners, and tool vendors). We present the results of a global Delphi study with these three groups of stakeholders, and discuss the findings and their implications for research and practice. Our findings suggest that the critical areas of concern are standardization of modeling approaches, identification of the value proposition of business process modeling, and model-driven process execution. These areas are also expected to persist as business process modeling roadblocks in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process-centered design of organizations and information systems is globally seen as an appropriate response to the increased economic pressure on organizations. At the methodological core of process-centered management is process modeling. However, business process modeling in large initiatives can be a time-consuming and costly exercise, making it potentially difficult to convince executive management of its benefits. To date, and despite substantial interest and research in the area of process modeling, the understanding of the actual benefits of process modeling in academia and practice is limited. To address this gap, this paper explores the perception of benefits derived from process modeling initiatives, as reported through a global Delphi study. The study incorporates the views of three groups of stakeholders – academics, practitioners and vendors. Our findings lead to the first identification and ranking of 19 unique benefits associated with process modeling. The study in particular found that process modeling benefits vary significantly between practitioners and academics. We argue that these variations may point to a dangerous disconnect between research projects and practical demands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Denial-of-service attacks (DoS) and distributed denial-of-service attacks (DDoS) attempt to temporarily disrupt users or computer resources to cause service un- availability to legitimate users in the internetworking system. The most common type of DoS attack occurs when adversaries °ood a large amount of bogus data to interfere or disrupt the service on the server. The attack can be either a single-source attack, which originates at only one host, or a multi-source attack, in which multiple hosts coordinate to °ood a large number of packets to the server. Cryptographic mechanisms in authentication schemes are an example ap- proach to help the server to validate malicious tra±c. Since authentication in key establishment protocols requires the veri¯er to spend some resources before successfully detecting the bogus messages, adversaries might be able to exploit this °aw to mount an attack to overwhelm the server resources. The attacker is able to perform this kind of attack because many key establishment protocols incorporate strong authentication at the beginning phase before they can iden- tify the attacks. This is an example of DoS threats in most key establishment protocols because they have been implemented to support con¯dentiality and data integrity, but do not carefully consider other security objectives, such as availability. The main objective of this research is to design denial-of-service resistant mechanisms in key establishment protocols. In particular, we focus on the design of cryptographic protocols related to key establishment protocols that implement client puzzles to protect the server against resource exhaustion attacks. Another objective is to extend formal analysis techniques to include DoS- resistance. Basically, the formal analysis approach is used not only to analyse and verify the security of a cryptographic scheme carefully but also to help in the design stage of new protocols with a high level of security guarantee. In this research, we focus on an analysis technique of Meadows' cost-based framework, and we implement DoS-resistant model using Coloured Petri Nets. Meadows' cost-based framework is directly proposed to assess denial-of-service vulnerabil- ities in the cryptographic protocols using mathematical proof, while Coloured Petri Nets is used to model and verify the communication protocols using inter- active simulations. In addition, Coloured Petri Nets are able to help the protocol designer to clarify and reduce some inconsistency of the protocol speci¯cation. Therefore, the second objective of this research is to explore vulnerabilities in existing DoS-resistant protocols, as well as extend a formal analysis approach to our new framework for improving DoS-resistance and evaluating the performance of the new proposed mechanism. In summary, the speci¯c outcomes of this research include following results; 1. A taxonomy of denial-of-service resistant strategies and techniques used in key establishment protocols; 2. A critical analysis of existing DoS-resistant key exchange and key estab- lishment protocols; 3. An implementation of Meadows's cost-based framework using Coloured Petri Nets for modelling and evaluating DoS-resistant protocols; and 4. A development of new e±cient and practical DoS-resistant mechanisms to improve the resistance to denial-of-service attacks in key establishment protocols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selecting an appropriate business process modelling technique forms an important task within the methodological challenges of a business process management project. While a plethora of available techniques has been developed over the last decades, there is an obvious shortage of well-accepted reference frameworks that can be used to evaluate and compare the capabilities of the different techniques. Academic progress has been made at least in the area of representational analyses that use ontology as a benchmark for such evaluations. This paper reflects on the comprehensive experiences with the application of a model based on the Bunge ontology in this context. A brief overview of the underlying research model characterizes the different steps in such a research project. A comparative summary of previous representational analyses of process modelling techniques over time gives insights into the relative maturity of selected process modelling techniques. Based on these experiences suggestions are made as to where ontology-based representational analyses could be further developed and what limitations are inherent to such analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This final report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The construction industry has adapted information technology in its processes in terms of computer aided design and drafting, construction documentation and maintenance. The data generated within the construction industry has become increasingly overwhelming. Data mining is a sophisticated data search capability that uses classification algorithms to discover patterns and correlations within a large volume of data. This paper presents the selection and application of data mining techniques on maintenance data of buildings. The results of applying such techniques and potential benefits of utilising their results to identify useful patterns of knowledge and correlations to support decision making of improving the management of building life cycle are presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This Industry focused report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The building life cycle process is complex and prone to fragmentation as it moves through its various stages. The number of participants, and the diversity, specialisation and isolation both in space and time of their activities, have dramatically increased over time. The data generated within the construction industry has become increasingly overwhelming. Most currently available computer tools for the building industry have offered productivity improvement in the transmission of graphical drawings and textual specifications, without addressing more fundamental changes in building life cycle management. Facility managers and building owners are primarily concerned with highlighting areas of existing or potential maintenance problems in order to be able to improve the building performance, satisfying occupants and minimising turnover especially the operational cost of maintenance. In doing so, they collect large amounts of data that is stored in the building’s maintenance database. The work described in this paper is targeted at adding value to the design and maintenance of buildings by turning maintenance data into information and knowledge. Data mining technology presents an opportunity to increase significantly the rate at which the volumes of data generated through the maintenance process can be turned into useful information. This can be done using classification algorithms to discover patterns and correlations within a large volume of data. This paper presents how and what data mining techniques can be applied on maintenance data of buildings to identify the impediments to better performance of building assets. It demonstrates what sorts of knowledge can be found in maintenance records. The benefits to the construction industry lie in turning passive data in databases into knowledge that can improve the efficiency of the maintenance process and of future designs that incorporate that maintenance knowledge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sleeper is an 18'00" musical work for live performer and laptop computer which exists as both a live performance work and a recorded work for audio CD. The work has been presented at a range of international performance events and survey exhibitions. These include the 2003 International Computer Music Conference (Singapore) where it was selected for CD publication, Variable Resistance (San Francisco Museum of Modern Art, USA), and i.audio, a survey of experimental sound at the Performance Space, Sydney. The source sound materials are drawn from field recordings made in acoustically resonant spaces in the Australian urban environment, amplified and acoustic instruments, radio signals, and sound synthesis procedures. The processing techniques blur the boundaries between, and exploit, the perceptual ambiguities of de-contextualised and processed sound. The work thus challenges the arbitrary distinctions between sound, noise and music and attempts to reveal the inherent musicality in so-called non-musical materials via digitally re-processed location audio. Thematically the work investigates Paul Virilio’s theory that technology ‘collapses space’ via the relationship of technology to speed. Technically this is explored through the design of a music composition process that draws upon spatially and temporally dispersed sound materials treated using digital audio processing technologies. One of the contributions to knowledge in this work is a demonstration of how disparate materials may be employed within a compositional process to produce music through the establishment of musically meaningful morphological, spectral and pitch relationships. This is achieved through the design of novel digital audio processing networks and a software performance interface. The work explores, tests and extends the music perception theories of ‘reduced listening’ (Schaeffer, 1967) and ‘surrogacy’ (Smalley, 1997), by demonstrating how, through specific audio processing techniques, sounds may shifted away from ‘causal’ listening contexts towards abstract aesthetic listening contexts. In doing so, it demonstrates how various time and frequency domain processing techniques may be used to achieve this shift.