947 resultados para Compact subsets
Resumo:
Current forensic practice in age estimation relies on the application of morphological standards as a means to characterize complex threedimensional skeletal surfaces. Research in our laboratory has demonstrated that the application of the morphologically based Suchey-Brooks method to a contemporary Queensland, Australian population demonstrated significant inaccuracy in age-estimation. Consequently, this study presents preliminary results to quantify age-related skeletal changes of the pubic symphysis in Queensland individuals using novel geometric and micro-architectural protocols that have the potential of improving age estimation in the forensic context. Computed tomography scans of the right and left pubis were obtained from Caucasian individuals aged 15–70 years (n=195) from the Queensland Health Forensic and Scientific Services. Morphometric variables including surface area, circumference, maximum height and width of the symphyseal surface, and micro-architectural assessment of cortical and trabecular bone structure were conducted in Rapidform XOS and Osteomeasure, respectively. Morphometric analysis demonstrated increases in maximum height and width of the surface with age independent of gender, with most significant (P<0.05) changes between the 25–34 and 55–64 year subsets. Sexual dimorphism and bilateral asymmetry were prominent features in the Queensland population. Micro-architectural analysis demonstrated degradation of cortical composition with age, with differential bone resorption between the medial, ventral and dorsal aspects of the symphysis. The ability to quantitatively model age-related changes to the pubic symphysis provides potential for future methodological refinement, where rigor and robust geometric assessment of the surface may remove the subjectivity associated with aging the pubic symphysis.
Resumo:
Purpose – The purpose of this paper is to study whether auditor independence reforms introduced in 2004 led to an enhancement in earnings quality in the post-reform era. Design/methodology/approach – This study predicts that as the cost of compliance will vary based on a firm's existing corporate governance regime and the level of external scrutiny (monitoring) it faces, we compare the earnings quality of a sample of “established” (S&P/ASX 100) to a sample of “emerging” (S&P/ASX Small Ordinaries Index) firms. The paper examines the reporting behaviour of the two groups of listed entities, covering the regulatory change period 2003-2006. The paper uses regression modelling to test the associations between increased audit independence, earnings quality and corporate governance mechanisms over the pre- and post-regulatory period. Findings – The paper's results confirm that earnings quality for the established firms was enhanced in the post-reform period; while this was not the case for emerging firms. The evidence also suggests that corporate governance mechanisms of board independence and board financial skill are associated with higher earnings quality; while the higher the concentration of insider firm ownership is associated with lower earnings quality. Practical implications – This study provides policy makers with evidence as to changes in reporting behaviour following law reform aimed at strengthening auditor independence. Originality/value – The studies on earnings quality are informed by the US market practices. Australia provides a unique setting through its auditor independence reforms to examine the impact of reform choices. This study also investigates two specific subsets of the market: established firms and emerging firms.
Resumo:
Generally, the magnitude of pollutant emissions from diesel engines running on biodiesel fuel is ultimately coupled to the structure of respective molecules that constitutes the fuel. Previous studies demonstrated the relationship between organic fraction of PM and its oxidative potential. Herein, emissions from a diesel engine running on different biofuels were analysed in more detail to explore the role different organic fractions play in the measured oxidative potential. In this work, a more detailed chemical analysis of biofuel PM was undertaken using a compact Time of Flight Aerosol Mass Spectrometer (c-ToF AMS). This enabled a better identification of the different organic fractions that contribute to the overall measured oxidative potentials. The concentration of reactive oxygen species (ROS) was measured using a profluorescent nitroxide molecular probe 9-(1,1,3,3-tetramethylisoindolin-2-yloxyl-5-ethynyl)-10-(phenylethynyl)anthracene (BPEAnit). Therefore the oxidative potential of the PM, measured through the ROS content, although proportional to the total organic content in certain cases shows a much higher correlation with the oxygenated organic fraction as measured by the c-ToF AMS. This highlights the importance of knowing the surface chemistry of particles for assessing their health impacts. It also sheds light onto new aspects of particulate emissions that should be taken into account when establishing relevant metrics for assessing health implications of replacing diesel with alternative fuels.
Resumo:
A method for prediction of the radiation pattern of N strongly coupled antennas with mismatched sources is presented. The method facilitates fast and accurate design of compact arrays. The prediction is based on the measured N-port S parameters of the coupled antennas and the N active element patterns measured in a 50 ω environment. By introducing equivalent power sources, the radiation pattern with excitation by sources with arbitrary impedances and various decoupling and matching networks (DMN) can be accurately predicted without the need for additional measurements. Two experiments were carried out for verification: pattern prediction for parasitic antennas with different loads and for antennas with DMN. The difference between measured and predicted patterns was within 1 to 2 dB.
Resumo:
In this paper, we describe a method to represent and discover adversarial group behavior in a continuous domain. In comparison to other types of behavior, adversarial behavior is heavily structured as the location of a player (or agent) is dependent both on their teammates and adversaries, in addition to the tactics or strategies of the team. We present a method which can exploit this relationship through the use of a spatiotemporal basis model. As players constantly change roles during a match, we show that employing a "role-based" representation instead of one based on player "identity" can best exploit the playing structure. As vision-based systems currently do not provide perfect detection/tracking (e.g. missed or false detections), we show that our compact representation can effectively "denoise" erroneous detections as well as enabe temporal analysis, which was previously prohibitive due to the dimensionality of the signal. To evaluate our approach, we used a fully instrumented field-hockey pitch with 8 fixed high-definition (HD) cameras and evaluated our approach on approximately 200,000 frames of data from a state-of-the-art real-time player detector and compare it to manually labelled data.
Resumo:
Fatigue/sleepiness is recognised as an important contributory factor in fatal and serious injury road traffic incidents (RTIs), however, identifying fatigue/sleepiness as a causal factor remains an uncertain science. Within Australia attending police officers at a RTI report the causal factors; one option is fatigue/sleepiness. In some Australian jurisdictions police incident databases are subject to post hoc analysis using a proxy definition for fatigue/sleepiness. This secondary analysis identifies further RTIs caused by fatigue/sleepiness not initially identified by attending officers. The current study investigates the efficacy of such proxy definitions for attributing fatigue/sleepiness as a RTI causal factor. Over 1600 Australian drivers were surveyed regarding their experience and involvement in fatigue/sleep-related RTIs and near-misses during the past five years. Driving while fatigued/sleepy had been experienced by the majority of participants (66.0% of participants). Fatigue/sleep-related near misses were reported by 19.1% of participants, with 2.4% being involved in a fatigue/sleep-related RTI. Examination of the characteristics for the most recent event (either a near miss or crash) found that the largest proportion of incidents (28.0%) occurred when commuting to or from work, followed by social activities (25.1%), holiday travel (19.8%), or for work purposes (10.1%). The fatigue/sleep related RTI and near-miss experience of a representative sample of Australian drivers does not reflect the proxy definitions used for fatigue/sleepiness identification. In particular those RTIs that occur in urban areas and at slow speeds may not be identified. While important to have a strategy for identifying fatigue/sleepiness related RTIs proxy measures appear best suited to identifying specific subsets of such RTIs.
Resumo:
Even though gold is the noblest of metals, a weak chemisorber and is regarded as being quite inert, it demonstrates significant electrocatalytic activity in its nanostructured form. It is demonstrated here that nanostructured and even evaporated thin films of gold are covered with active sites which are responsible for such activity. The identification of these sites is demonstrated with conventional electrochemical techniques such as cyclic voltammetry as well as a large amplitude Fourier transformed alternating current (FT-ac) method under acidic and alkaline conditions. The latter technique is beneficial in determining if an electrode process is either Faradaic or capacitive in nature. The observed behaviour is analogous to that observed for activated gold electrodes whose surfaces have been severely disrupted by cathodic polarisation in the hydrogen evolution region. It is shown that significant electrochemical oxidation responses occur at discrete potential values well below that for the formation of the compact monolayer oxide of bulk gold and are attributed to the facile oxidation of surface active sites. Several electrocatalytic reactions are explored in which the onset potential is determined by the presence of such sites on the surface. Significantly, the facile oxidation of active sites is used to drive the electroless deposition of metals such as platinum, palladium and silver from their aqueous salts on the surface of gold nanostructures. The resultant surface decoration of gold with secondary metal nanoparticles not only indicates regions on the surface which are rich in active sites but also provides a method to form interesting bimetallic surfaces.
Resumo:
Condensation technique of degree of freedom is firstly proposed to improve the computational efficiency of meshfree method with Galerkin weak form. In present method, scattered nodes without connectivity are divided into several subsets by cells with arbitrary shape. The local discrete equations are established over each cell by using moving kriging interpolation, in which the nodes that located in the cell are used for approximation. Then, the condensation technique can be introduced into the local discrete equations by transferring equations of inner nodes to equations of boundary nodes based on cell. In the scheme of present method, the calculation of each cell is carried out by meshfree method with Galerkin weak form, and local search is implemented in interpolation. Numerical examples show that the present method has high computational efficiency and convergence, and good accuracy is also obtained.
Resumo:
DOUBLE-STRANDED RNA BIN DIN G (DRB) proteins have been functionally characterized in viruses, prokaryotes and eukaryotes and are involved in all aspects of RNA biology. Arabidopsis thaliana (Arabidopsis) encodes five closely related DRB proteins, DRB1 to DRB5. DRB1 and DRB4 are required by DICER-LIKE (DCL) proteins DCL1 and DCL4 to accurately and efficiently process structurally distinct double-stranded RNA (dsRNA) precursor substrates in the microRNA (miRNA) and trans-acting small-interfering RNA (tasiRNA) biogenesis pathways respectively. We recently reported that DRB2 is also involved in the biogenesis of specific miRNA subsets. Furthermore, the severity of the developmental phenotype displayed by the drb235 triple mutant plant, compared with those expressed by either drb2, drb3 and drb5 single mutants, or double mutant combinations thereof, indicates that DRB3 and DRB5 function in the same non-canonical miRNA pathway as DRB2. Through the use of our artificial miRNA (amiRNA) plant expression vector, pBlueGreen 2,3 we demonstrate here that unlike DRB2, DRB3 and DRB5 are not involved in the dsRNA processing stages of the miRNA biogenesis pathway, but are required to mediate RNA silencing of target genes of DRB2-associated miRNA s. © 2012 Landes Bioscience.
Resumo:
Sharing some closely related themes and a common theoretical orientation based on the governmentality analytic, these are nevertheless two very different contributions to criminological knowledge and theory. The first, The Currency of Justice: Fines and Damages in Consumer Societies (COJ), is a sustained and highly original analysis of that most pervasive yet overlooked feature of modern legal orders; their reliance on monetary sanctions. Crime and Risk (CAR), on the other hand, is a short synoptic overview of the many dimensions and trajectories of risk in contemporary debate and practice, both the practices of crime and the governance of crime. It is one of the first in a new series by Sage, 'Compact Criminology', in which authors survey in little more than a hundred pages some current field of debate. With this small gem, Pat O'Malley has set the bar very high for those who follow. For all its brevity, CAR traverses a massive expanse of research, debates and issues, while also opening up new and challenging questions around the politics of risk and the relationship between criminal risk-taking and the governance of risk and crime. The two books draw together various threads of O'Malley's rich body of work on these issues, and once again demonstrate that he is one of the foremost international scholars of risk inside and outside criminology.
Resumo:
Due to the demand for better and deeper analysis in sports, organizations (both professional teams and broadcasters) are looking to use spatiotemporal data in the form of player tracking information to obtain an advantage over their competitors. However, due to the large volume of data, its unstructured nature, and lack of associated team activity labels (e.g. strategic/tactical), effective and efficient strategies to deal with such data have yet to be deployed. A bottleneck restricting such solutions is the lack of a suitable representation (i.e. ordering of players) which is immune to the potentially infinite number of possible permutations of player orderings, in addition to the high dimensionality of temporal signal (e.g. a game of soccer last for 90 mins). Leveraging a recent method which utilizes a "role-representation", as well as a feature reduction strategy that uses a spatiotemporal bilinear basis model to form a compact spatiotemporal representation. Using this representation, we find the most likely formation patterns of a team associated with match events across nearly 14 hours of continuous player and ball tracking data in soccer. Additionally, we show that we can accurately segment a match into distinct game phases and detect highlights. (i.e. shots, corners, free-kicks, etc) completely automatically using a decision-tree formulation.
Resumo:
Background Pretreatment of lignocellulosic biomass is a prerequisite for effective saccharification to produce fermentable sugars. We have previously reported an effective low temperature (90 °C) process at atmospheric pressure for pretreatment of sugarcane bagasse with acidified mixtures of ethylene carbonate (EC) and ethylene glycol (EG). In this study, “greener” solvent systems based on acidified mixtures of glycerol carbonate (GC) and glycerol were used to treat sugarcane bagasse and the roles of each solvent in deconstructing biomass were determined. Results Pretreatment of sugarcane bagasse at 90 °C for only 30 min with acidified GC produced a solid residue having a glucan digestibility of 90% and a glucose yield of 80%, which were significantly higher than a glucan digestibility of 16% and a glucose yield of 15% obtained for bagasse pretreated with acidified EC. Biomass compositional analyses showed that GC pretreatment removed more lignin than EC pretreatment (84% vs 54%). Scanning electron microscopy (SEM) showed that fluffy and size-reduced fibres were produced from GC pretreatment whereas EC pretreatment produced compact particles of reduced size. The maximal glucan digestibility and glucose yield of GC/glycerol systems were about 7% lower than those of EC/ethylene glycol (EG) systems. Replacing up to 50 wt% of GC with glycerol did not negatively affect glucan digestibility and glucose yield. The results from pretreatment of microcrystalline cellulose (MCC) showed that (1) pretreatment with acidified alkylene glycol (AG) alone increased enzymatic digestibility compared to pretreatments with acidified alkylene carbonate (AC) alone and acidified mixtures of AC and AG, (2) pretreatment with acidified GC alone slightly increased, but with acidified EC alone significantly decreased, enzymatic digestibility compared to untreated MCC, and (3) there was a good positive linear correlation of enzymatic digestibility of treated and untreated MCC samples with congo red (CR) adsorption capacity. Conclusions Acidified GC alone was a more effective solvent for pretreatment of sugarcane bagasse than acidified EC alone. The higher glucose yield obtained with GC-pretreated bagasse is possibly due to the presence of one hydroxyl group in the GC molecular structure, resulting in more significant biomass delignification and defibrillation, though both solvent pretreatments reduced bagasse particles to a similar extent. The maximum glucan digestibility of GC/glycerol systems was less than that of EC/EG systems, which is likely attributed to glycerol being less effective than EG in biomass delignification and defibrillation. Acidified AC/AG solvent systems were more effective for pretreatment of lignin-containing biomass than MCC.
Resumo:
The majority of non-small cell lung cancer (NSCLC) patients present with advanced disease and with a 5 year survival rate of <15% for these patients, treatment outcomes are considered extremely disappointing. Standard chemotherapy regimens provide some improvement to ~40% of patients. However, intrinsic and acquired chemoresistance are a significant problem and hinder sustained long term benefits of such treatments. Advances in proteomic and genomic profiling have increased our understanding of the aberrant molecular mechanisms that are driving an individual's tumour. The increased sensitivity of these technologies has enabled molecular profiling at the stage of initial biopsy thus paving the way for a more personalised approach to the treatment of cancer patients. Improvements in diagnostics together with a wave of new targeted small molecule inhibitors and monoclonal antibodies have revolutionised the treatment of cancer. To date there are essentially three targeted agents approved for clinical use in NSCLC. The tyrosine kinase inhibitor (TKI) erlotinib, which targets the epidermal growth factor receptor (EGFR) TK domain, has proven to be an effective treatment strategy in patients who harbour activating mutations in the EGFR TK domain. Bevacizumab a monoclonal antibody targeting the vascular endothelial growth factor (VEGF) can improve survival, response rates, and progression-free survival when used in combination with chemotherapy. Crizotinib, a small-molecule drug, inhibits the tyrosine kinase activity of the echinoderm microtubule-associated protein-like 4 anaplastic lymphoma kinase (EML4-ALK) fusion protein, resulting in decreased tumour cell growth, migration, and invasiveness in patients with locally advanced or metastatic NSCLC. The clinical relevance of several other targeted agents are under investigation in distinct molecular subsets of patients with key "driver" mutations including: KRAS, HER2, BRAF, MET, PIK3CA, AKT1,MAP2K1, ROS1 and RET. Often several pathways are activated simultaneously and crosstalk between pathways allows tumour cells to escape the inhibition of a single targeted agent. This chapter will explore the clinical development of currently available targeted therapies for NSCLC as well as those in clinical trials and will examine the synergy between cytotoxic therapies.
Resumo:
During the evolution of the music industry, developments in the media environment have required music firms to adapt in order to survive. Changes in broadcast radio programming during the 1950s; the Compact Cassette during the 1970s; and the deregulation of media ownership during the 1990s are all examples of changes which have heavily affected the music industry. This study explores similar contemporary dynamics, examines how decision makers in the music industry perceive and make sense of the developments, and reveals how they revise their business strategies, based on their mental models of the media environment. A qualitative system dynamics model is developed in order to support the reasoning brought forward by the study. The model is empirically grounded, but is also based on previous music industry research and a theoretical platform constituted by concepts from evolutionary economics and sociology of culture. The empirical data primarily consist of 36 personal interviews with decision makers in the American, British and Swedish music industrial ecosystems. The study argues that the model which is proposed, more effectively explains contemporary music industry dynamics than music industry models presented by previous research initiatives. Supported by the model, the study is able to show how “new” media outlets make old music business models obsolete and challenge the industry’s traditional power structures. It is no longer possible to expose music at one outlet (usually broadcast radio) in the hope that it will lead to sales of the same music at another (e.g. a compact disc). The study shows that many music industry decision makers still have not embraced the new logic, and have not yet challenged their traditional mental models of the media environment. Rather, they remain focused on preserving the pivotal role held by the CD and other physical distribution technologies. Further, the study shows that while many music firms remain attached to the old models, other firms, primarily music publishers, have accepted the transformation, and have reluctantly recognised the realities of a virtualised environment.
Resumo:
Despite the predictions, the true potential of Nb2O5 for electrochromic applications has yet to be fully realized. In this work, three-dimensional (3D) compact and well-ordered nanoporous Nb2O5 films are synthesized by the electrochemical anodization of niobium thin films. These films are formed using RF sputtering and then anodized in an electrolyte containing ethylene glycol, ammonium fluoride, and small water content (4%) at 50 °C which resulted in low embedded impurities within the structure. Characterization of the anodized films shows that a highly crystalline orthorhombic phase of Nb2O5 is obtained after annealing at 450 °C. The 3D structure provides a template consisting of a large concentration of active sites for ion intercalation, while also ensuring low scattering directional paths for electrons. These features enhance the coloration efficiency to 47.0 cm2 C?1 (at 550 nm) for a 500 nm thick film upon Li+ ion intercalation. Additionally, the Nb2O5 electrochromic device shows a high bleached state transparency and large optical modulation.