853 resultados para Collective Imaginary
Resumo:
Nervous Kitchens intervenes in the story of soul food by treating the kitchen as a central site of instability. These kitchens reveal and critique their importance to constructions of Black womanhood. Utilizing close readings of Black women’s culinary practices in popular televisual kitchens and archival analysis of USDA domestic reforms, the project locates sites that challenge how we oversimplify soul food as a Black cultural product. These oversimplifications come through what I term the soul food imaginary. This term underscores how the cuisine is tangible (i.e., how dishes are made) but also the ways that histories of enslavement, migration, and domesticity are disseminated through fictionalized representations of Black women in the kitchen offering comfort through food. The project explores how images of these kitchens adhere to and diverge from the imaginary's four conventions: (1) Soul food originates in enslavement where master’s scraps became mama’s meal time; (2) Soul food is not healthy food; (3) Soul food moves South to North uninterrupted during the Great Migration and is evidence of and fuel for struggle, survival, and transformation; and 4) Black women cook it the best, naturally, and alone in the kitchen.
Resumo:
This dissertation focuses on gaining understanding of cell migration and collective behavior through a combination of experiment, analysis, and modeling techniques. Cell migration is a ubiquitous process that plays an important role during embryonic development and wound healing as well as in diseases like cancer, which is a particular focus of this work. As cancer cells become increasingly malignant, they acquire the ability to migrate away from the primary tumor and spread throughout the body to form metastatic tumors. During this process, changes in gene expression and the surrounding tumor environment can lead to changes in cell migration characteristics. In this thesis, I analyze how cells are guided by the texture of their environment and how cells cooperate with their neighbors to move collectively. The emergent properties of collectively moving groups are a particular focus of this work as collective cell dynamics are known to change in diseases such as cancer. The internal machinery for cell migration involves polymerization of the actin cytoskeleton to create protrusions that---in coordination with retraction of the rear of the cell---lead to cell motion. This actin machinery has been previously shown to respond to the topography of the surrounding surface, leading to guided migration of amoeboid cells. Here we show that epithelial cells on nanoscale ridge structures also show changes in the morphology of their cytoskeletons; actin is found to align with the ridge structures. The migration of the cells is also guided preferentially along the ridge length. These ridge structures are on length scales similar to those found in tumor microenvironments and as such provide a system for studying the response of the cells' internal migration machinery to physiologically relevant topographical cues. In addition to sensing surface topography, individual cells can also be influenced by the pushing and pulling of neighboring cells. The emergent properties of collectively migrating cells show interesting dynamics and are relevant for cancer progression, but have been less studied than the motion of individual cells. We use Particle Image Velocimetry (PIV) to extract the motion of a collectively migrating cell sheet from time lapse images. The resulting flow fields allow us to analyze collective behavior over multiple length and time scales. To analyze the connection between individual cell properties and collective migration behavior, we compare experimental flow fields with the migration of simulated cell groups. Our collective migration metrics allow for a quantitative comparison between experimental and simulated results. This comparison shows that tissue-scale decreases in collective behavior can result from changes in individual cell activity without the need to postulate the existence of subpopulations of leader cells or global gradients. In addition to tissue-scale trends in collective behavior, the migration of cell groups includes localized dynamic features such as cell rearrangements. An individual cell may smoothly follow the motion of its neighbors (affine motion) or move in a more individualistic manner (non-affine motion). By decomposing individual motion into both affine and non-affine components, we measure cell rearrangements within a collective sheet. Finally, finite-time Lyapunov exponent (FTLE) values capture the stretching of the flow field and reflect its chaotic character. Applying collective migration analysis techniques to experimental data on both malignant and non-malignant human breast epithelial cells reveals differences in collective behavior that are not found from analyzing migration speeds alone. Non-malignant cells show increased cooperative motion on long time scales whereas malignant cells remain uncooperative as time progresses. Combining multiple analysis techniques also shows that these two cell types differ in their response to a perturbation of cell-cell adhesion through the molecule E-cadherin. Non-malignant MCF10A cells use E-cadherin for short time coordination of collective motion, yet even with decreased E-cadherin expression, the cells remain coordinated over long time scales. In contrast, the migration behavior of malignant and invasive MCF10CA1a cells, which already shows decreased collective dynamics on both time scales, is insensitive to the change in E-cadherin expression.
Resumo:
Versión en inglés de la lección 3ª y materiales complementarios (diapositivas Pwp y cuestionario) correspondientes a la asignatura Derecho del Trabajo I (grupo ARA) del Grado en Derecho.
Resumo:
Cloth map.
Resumo:
Accompanied by text of Guide to the map of fairyland. Designed & written by Bernard Sleigh. London, Sidgwick & Jackson, [1920?] 16 pages : text, illustrations ; 19 cm.
Resumo:
This dissertation focuses on gaining understanding of cell migration and collective behavior through a combination of experiment, analysis, and modeling techniques. Cell migration is a ubiquitous process that plays an important role during embryonic development and wound healing as well as in diseases like cancer, which is a particular focus of this work. As cancer cells become increasingly malignant, they acquire the ability to migrate away from the primary tumor and spread throughout the body to form metastatic tumors. During this process, changes in gene expression and the surrounding tumor environment can lead to changes in cell migration characteristics. In this thesis, I analyze how cells are guided by the texture of their environment and how cells cooperate with their neighbors to move collectively. The emergent properties of collectively moving groups are a particular focus of this work as collective cell dynamics are known to change in diseases such as cancer. The internal machinery for cell migration involves polymerization of the actin cytoskeleton to create protrusions that---in coordination with retraction of the rear of the cell---lead to cell motion. This actin machinery has been previously shown to respond to the topography of the surrounding surface, leading to guided migration of amoeboid cells. Here we show that epithelial cells on nanoscale ridge structures also show changes in the morphology of their cytoskeletons; actin is found to align with the ridge structures. The migration of the cells is also guided preferentially along the ridge length. These ridge structures are on length scales similar to those found in tumor microenvironments and as such provide a system for studying the response of the cells' internal migration machinery to physiologically relevant topographical cues. In addition to sensing surface topography, individual cells can also be influenced by the pushing and pulling of neighboring cells. The emergent properties of collectively migrating cells show interesting dynamics and are relevant for cancer progression, but have been less studied than the motion of individual cells. We use Particle Image Velocimetry (PIV) to extract the motion of a collectively migrating cell sheet from time lapse images. The resulting flow fields allow us to analyze collective behavior over multiple length and time scales. To analyze the connection between individual cell properties and collective migration behavior, we compare experimental flow fields with the migration of simulated cell groups. Our collective migration metrics allow for a quantitative comparison between experimental and simulated results. This comparison shows that tissue-scale decreases in collective behavior can result from changes in individual cell activity without the need to postulate the existence of subpopulations of leader cells or global gradients. In addition to tissue-scale trends in collective behavior, the migration of cell groups includes localized dynamic features such as cell rearrangements. An individual cell may smoothly follow the motion of its neighbors (affine motion) or move in a more individualistic manner (non-affine motion). By decomposing individual motion into both affine and non-affine components, we measure cell rearrangements within a collective sheet. Finally, finite-time Lyapunov exponent (FTLE) values capture the stretching of the flow field and reflect its chaotic character. Applying collective migration analysis techniques to experimental data on both malignant and non-malignant human breast epithelial cells reveals differences in collective behavior that are not found from analyzing migration speeds alone. Non-malignant cells show increased cooperative motion on long time scales whereas malignant cells remain uncooperative as time progresses. Combining multiple analysis techniques also shows that these two cell types differ in their response to a perturbation of cell-cell adhesion through the molecule E-cadherin. Non-malignant MCF10A cells use E-cadherin for short time coordination of collective motion, yet even with decreased E-cadherin expression, the cells remain coordinated over long time scales. In contrast, the migration behavior of malignant and invasive MCF10CA1a cells, which already shows decreased collective dynamics on both time scales, is insensitive to the change in E-cadherin expression.
Resumo:
Due to their unpredictable behavior, stock markets are examples of complex systems. Yet, the dominant analysis of these markets as- sumes simple stochastic variations, eventually tainted by short-lived memory. This paper proposes an alternative strategy, based on a stochastic geometry defining a robust index of the structural dynamics of the markets and based on notions of topology defining a new coef- ficient that identifies the structural changes occurring on the S&P500 set of stocks. The results demonstrate the consistency of the random hypothesis as applied to normal periods but they also show its in- adequacy as to the analysis of periods of turbulence, for which the emergence of collective behavior of sectoral clusters of firms is mea- sured. This behavior is identified as a meta-routine.
Resumo:
Free-riding behaviors exist in tourism and they should be analyzed from a comprehensive perspective; while the literature has mainly focused on free riders operating in a destination, the destinations themselves might also free ride when they are under the umbrella of a collective brand. The objective of this article is to detect potential free-riding destinations by estimating the contribution of the different individual destinations to their collective brands, from the point of view of consumer perception. We argue that these individual contributions can be better understood by reflecting the various stages that tourists follow to reach their final decision. A hierarchical choice process is proposed in which the following choices are nested (not independent): “whether to buy,” “what collective brand to buy,” and “what individual brand to buy.” A Mixed Logit model confirms this sequence, which permits estimation of individual contributions and detection of free riders.
Resumo:
This dissertation presents a thick ethnography that engages in the micro-analysis of the situationality of black middle-class collective identification processes through an examination of performances by members of the nine historically black sororities and fraternities at Atlanta Greek Picnic, an annual festival that occurs at the beginning of June in Atlanta, Georgia. It mainly attracts undergraduate and graduate members of these university-based organizations, as they exist all over the United States. This exploration of black Greek-letter organization (BGLO) performances uncovers processes through which young black middle-class individuals attempt to combine two universes that are at first glance in complete opposition to each other: the domain of the traditional black middle-class values with representations and fashions stemming from black popular culture. These constructions also attempt to incorporate—in a contradiction of sorts— black popular cultural elements in the objective to deconstruct the social conservatism that characterizes middle-class values, particularly in relation to sexuality and its representation in social behaviors and performances. This negotiation between prescribed v middle-class values of respectability and black popular culture provides a space wherein black individuals challenge and/or perpetuate those dominant tropes through identity performances that feed into the formation of black sexual politics, which I examine through a variety of BGLO staged and non-staged performances. ^
Resumo:
2010
Resumo:
Single walled carbon nanotubes (SWNTs) were incorporated in polymer nanocomposites based on poly(3-octylthiophene) (P3OT), thermoplastic polyurethane (TPU) or a blend of them. Thermogravimetry demonstrated the success of the purification procedure employed in the chemical treatment of SWNTs prior to composite preparation. Stable dispersions of SWNTs in chloroform were obtained by non-covalent interactions with the dissolved polymers. Composites exhibited glass transitions, melting temperatures and heat of fusion which changed in relation to pure polymers. This behavior is discussed as associated to interactions between nanotubes and polymers. The conductivity at room temperature of the blend (TPU-P3OT) with SWNT is higher than the P3OT/SWNT composite.
Resumo:
This paper presents a prototype tracking system for tracking people in enclosed indoor environments where there is a high rate of occlusions. The system uses a stereo camera for acquisition, and is capable of disambiguating occlusions using a combination of depth map analysis, a two step ellipse fitting people detection process, the use of motion models and Kalman filters and a novel fit metric, based on computationally simple object statistics. Testing shows that our fit metric outperforms commonly used position based metrics and histogram based metrics, resulting in more accurate tracking of people.
Resumo:
Person tracking systems are dependent on being able to locate a person accurately across a series of frames. Optical flow can be used to segment a moving object from a scene, provided the expected velocity of the moving object is known; but successful detection also relies on being able segment the background. A problem with existing optical flow techniques is that they don’t discriminate the foreground from the background, and so often detect motion (and thus the object) in the background. To overcome this problem, we propose a new optical flow technique, that is based upon an adaptive background segmentation technique, which only determines optical flow in regions of motion. This technique has been developed with a view to being used in surveillance systems, and our testing shows that for this application it is more effective than other standard optical flow techniques.
Resumo:
Why Fundamentalism? was an exhibition proposal and critical writing project developed from concept phase through to detailed proposal. It included an edited video document that lay out its core ideas and presented the diverse voices of each collaborator. A number of key themes were engaged around the hot-button (and much misunderstood) concept of Fundamentalism. The proposal included an exhibition layout, developed test imagery, ideas and animations, proposed forms for future works and a process whereby design briefs would lead to subsequent commissions. Two major grant applications were submitted to the Australia Council and Arts Queensland, with the support of State Library of Queensland, the University of Adelaide and numerous others. The project remains at the developed proposal stage awaiting suitable funding----- Critically the show became an active vehicle for drawing and exploring a line of distinction between ideas of ‘what is fundamental’ and ‘fundamentalism’ as it rested in the popular imagination, as well as in political and philosophical debates. It teased out and engaged with a number of key questions that included The Problem of Ungroundedness, A Politics of Finitude, The Post-modern/Pluralist Problem, Silent Fundamentalisms (Voices of Reason and Neo-con Religions), Fundamentalism as a Media Construct, The Pre and Post Cold-war Other, The Pressing Need for Foundations in the West and Islam as Foundationalism (rather than fundamentalism).