786 resultados para Collaborative robots
Resumo:
Sensor networks are becoming popular nowadays in the development of smart environments. Heavily relying on static sensor and actuators, though, such environments usually lacks of versatility regarding the provided services and interaction capabilities. Here we present a framework for smart environments where a service robot is included within the sensor network acting as a mobile sensor and/or actuator. Our framework integrates on-the-shelf technologies to ensure its adaptability to a variety of sensor technologies and robotic software. Two pilot cases are presented as evaluation of our proposal.
Resumo:
Le développement exponentiel de la technologie et le vieillissement de la population permettent d’introduire dans notre quotidien les robots d’assistance. La coexistence de l’homme avec ces robots intelligents et autonomes soulève une question fondamentale: dans l’éventualité où un robot provoquerait un accident causant un dommage à une personne ou à un bien qui serait le responsable? Aucune loi ne réglemente les activités de la robotique d’assistance dans le monde. Cette étude vise l’analyse de l’applicabilité des régimes de responsabilité du Code Civil du Québec aux cas de dommages causés par le robot d’assistance. L’analyse des régimes de responsabilité du Code civil du Québec permet de constater que deux régimes de responsabilité sont susceptibles d’être appliqués aux cas spécifiques de dommages causés par le robot d’assistance: le régime de responsabilité du fait des biens, énoncé à l’article 1465 C.c.Q., et le régime de responsabilité du fait des fabricants et vendeurs spécialisés, énoncé à l’article 1468 C.c.Q. Cela s’explique par la présence de critères et de conditions de mise en œuvre des régimes qui sont transposables aux différents aspects concernant la fabrication et l’utilisation du robot d’assistance.
Resumo:
In the current world geospatial information is being demanded in almost real time, which requires the speed at which this data is processed and made available to the user to be at an all-time high. In order to keep up with this ever increasing speed, analysts must find ways to increase their productivity. At the same time the demand for new analysts is high, and current methods of training are long and can be costly. Through the use of human computer interactions and basic networking systems, this paper explores new ways to increase efficiency in data processing and analyst training.
Resumo:
Consumers currently enjoy a surplus of goods (books, videos, music, or other items) available to purchase. While this surplus often allows a consumer to find a product tailored to their preferences or needs, the volume of items available may require considerable time or effort on the part of the user to find the most relevant item. Recommendation systems have become a common part of many online business that supply users books, videos, music, or other items to consumers. These systems attempt to provide assistance to consumers in finding the items that fit their preferences. This report presents an overview of recommendation systems. We will also briefly explore the history of recommendation systems and the large boost that was given to research in this field due to the Netflix Challenge. The classical methods for collaborative recommendation systems are reviewed and implemented, and an examination is performed contrasting the complexity and performance among the various models. Finally, current challenges and approaches are discussed.
Resumo:
Nowadays words like Smart City, Internet of Things, Environmental Awareness surround us with the growing interest of Computer Science and Engineering communities. Services supporting these paradigms are definitely based on large amounts of sensed data, which, once obtained and gathered, need to be analyzed in order to build maps, infer patterns, extract useful information. Everything is done in order to achieve a better quality of life. Traditional sensing techniques, like Wired or Wireless Sensor Network, need an intensive usage of distributed sensors to acquire real-world conditions. We propose SenSquare, a Crowdsensing approach based on smartphones and a central coordination server for time-and-space homogeneous data collecting. SenSquare relies on technologies such as CoAP lightweight protocol, Geofencing and the Military Grid Reference System.
Resumo:
Recommender system is a specific type of intelligent systems, which exploits historical user ratings on items and/or auxiliary information to make recommendations on items to the users. It plays a critical role in a wide range of online shopping, e-commercial services and social networking applications. Collaborative filtering (CF) is the most popular approaches used for recommender systems, but it suffers from complete cold start (CCS) problem where no rating record are available and incomplete cold start (ICS) problem where only a small number of rating records are available for some new items or users in the system. In this paper, we propose two recommendation models to solve the CCS and ICS problems for new items, which are based on a framework of tightly coupled CF approach and deep learning neural network. A specific deep neural network SADE is used to extract the content features of the items. The state of the art CF model, timeSVD++, which models and utilizes temporal dynamics of user preferences and item features, is modified to take the content features into prediction of ratings for cold start items. Extensive experiments on a large Netflix rating dataset of movies are performed, which show that our proposed recommendation models largely outperform the baseline models for rating prediction of cold start items. The two proposed recommendation models are also evaluated and compared on ICS items, and a flexible scheme of model retraining and switching is proposed to deal with the transition of items from cold start to non-cold start status. The experiment results on Netflix movie recommendation show the tight coupling of CF approach and deep learning neural network is feasible and very effective for cold start item recommendation. The design is general and can be applied to many other recommender systems for online shopping and social networking applications. The solution of cold start item problem can largely improve user experience and trust of recommender systems, and effectively promote cold start items.
Resumo:
Recommender systems (RS) are used by many social networking applications and online e-commercial services. Collaborative filtering (CF) is one of the most popular approaches used for RS. However traditional CF approach suffers from sparsity and cold start problems. In this paper, we propose a hybrid recommendation model to address the cold start problem, which explores the item content features learned from a deep learning neural network and applies them to the timeSVD++ CF model. Extensive experiments are run on a large Netflix rating dataset for movies. Experiment results show that the proposed hybrid recommendation model provides a good prediction for cold start items, and performs better than four existing recommendation models for rating of non-cold start items.
Resumo:
Le développement exponentiel de la technologie et le vieillissement de la population permettent d’introduire dans notre quotidien les robots d’assistance. La coexistence de l’homme avec ces robots intelligents et autonomes soulève une question fondamentale: dans l’éventualité où un robot provoquerait un accident causant un dommage à une personne ou à un bien qui serait le responsable? Aucune loi ne réglemente les activités de la robotique d’assistance dans le monde. Cette étude vise l’analyse de l’applicabilité des régimes de responsabilité du Code Civil du Québec aux cas de dommages causés par le robot d’assistance. L’analyse des régimes de responsabilité du Code civil du Québec permet de constater que deux régimes de responsabilité sont susceptibles d’être appliqués aux cas spécifiques de dommages causés par le robot d’assistance: le régime de responsabilité du fait des biens, énoncé à l’article 1465 C.c.Q., et le régime de responsabilité du fait des fabricants et vendeurs spécialisés, énoncé à l’article 1468 C.c.Q. Cela s’explique par la présence de critères et de conditions de mise en œuvre des régimes qui sont transposables aux différents aspects concernant la fabrication et l’utilisation du robot d’assistance.
Resumo:
Link to article on publisher site: https://www.press.jhu.edu/journals/portal_libraries_and_the_academy/portal_pre_print/articles/belanger.pdf
Resumo:
Cette recherche est née de constats (Sénéchal, 2012) et de la volonté d’outiller l’enseignement de la communication orale dans la perspective du développement de la compétence langagière orale des élèves. En vue d’atteindre le principal objectif de cette thèse, qui est de proposer des séquences didactiques valides pour l’enseignement de la discussion et de l’exposé critique, nous avons emprunté aux recherches d’ingénierie didactique de première génération (Artigue, 1988; Goigoux, 2012) afin de proposer une démarche d’ingénierie didactique collaborative, dont l’originalité tient à la collaboration qui sous-tend les étapes de la conception, de l’expérimentation et de la validation de son produit en deux phases. Pour cibler les outils et les pratiques à privilégier pour enseigner les deux genres ciblés, nous avons cherché à vérifier en quoi l’utilisation du dispositif de la séquence didactique facilite ou non la transposition didactique interne des prescriptions ministérielles les concernant, en étudiant la transformation des pratiques d’enseignement de nos collaborateurs à travers l’observation de leur mise en oeuvre des séquences didactiques. Quatre outils méthodologiques ont soutenu la collecte des données par la méthode d’observation directe : la captation audiovisuelle, le journal de bord, l’examen des documents des enseignants (notes personnelles) ainsi que le bilan collaboratif, une forme d’entretien mené auprès de nos collaborateurs permettant de faire le point sur la mise en oeuvre et sur le produit de l’ingénierie (notamment en ce qui concerne les ajustements nécessaires à une utilisation optimale du dispositif). Les résultats de l’analyse de ces données montrent non seulement que les séquences didactiques élaborées et expérimentées dans le cadre de notre démarche de recherche sont valides sur le plan de la légitimité, de la pertinence et de la cohérence des contenus, mais également que leur usage permet d’engendrer des gains en termes d’apprentissage pour les élèves et donne lieu à une transformation des pratiques d’enseignement de la communication orale de leurs utilisateurs. Les interventions des enseignants, notamment une augmentation significative des gestes didactiques de régulation et d’institutionnalisation, montrent, en effet, qu’ils se sont suffisamment approprié les contenus et les manières de faire du dispositif pour arriver à opérer seuls certaines des transformations adaptatives nécessaires à la transposition interne des objets en vue de rendre ces derniers enseignables et apprenables.
Resumo:
Il y a présentement de la demande dans plusieurs milieux cherchant à utiliser des robots afin d'accomplir des tâches complexes, par exemple l'industrie de la construction désire des travailleurs pouvant travailler 24/7 ou encore effectuer des operation de sauvetage dans des zones compromises et dangereuses pour l'humain. Dans ces situations, il devient très important de pouvoir transporter des charges dans des environnements encombrés. Bien que ces dernières années il y a eu quelques études destinées à la navigation de robots dans ce type d'environnements, seulement quelques-unes d'entre elles ont abordé le problème de robots pouvant naviguer en déplaçant un objet volumineux ou lourd. Ceci est particulièrement utile pour transporter des charges ayant de poids et de formes variables, sans avoir à modifier physiquement le robot. Un robot humanoïde est une des plateformes disponibles afin d'effectuer efficacement ce type de transport. Celui-ci a, entre autres, l'avantage d'avoir des bras et ils peuvent donc les utiliser afin de manipuler précisément les objets à transporter. Dans ce mémoire de maîtrise, deux différentes techniques sont présentées. Dans la première partie, nous présentons un système inspiré par l'utilisation répandue de chariots de fortune par les humains. Celle-ci répond au problème d'un robot humanoïde naviguant dans un environnement encombré tout en déplaçant une charge lourde qui se trouve sur un chariot de fortune. Nous présentons un système de navigation complet, de la construction incrémentale d'une carte de l'environnement et du calcul des trajectoires sans collision à la commande pour exécuter ces trajectoires. Les principaux points présentés sont : 1) le contrôle de tout le corps permettant au robot humanoïde d'utiliser ses mains et ses bras pour contrôler les mouvements du système à chariot (par exemple, lors de virages serrés) ; 2) une approche sans capteur pour automatiquement sélectionner le jeu approprié de primitives en fonction du poids de la charge ; 3) un algorithme de planification de mouvement qui génère une trajectoire sans collisions en utilisant le jeu de primitive approprié et la carte construite de l'environnement ; 4) une technique de filtrage efficace permettant d'ignorer le chariot et le poids situés dans le champ de vue du robot tout en améliorant les performances générales des algorithmes de SLAM (Simultaneous Localization and Mapping) défini ; et 5) un processus continu et cohérent d'odométrie formés en fusionnant les informations visuelles et celles de l'odométrie du robot. Finalement, nous présentons des expériences menées sur un robot Nao, équipé d'un capteur RGB-D monté sur sa tête, poussant un chariot avec différentes masses. Nos expériences montrent que la charge utile peut être significativement augmentée sans changer physiquement le robot, et donc qu'il est possible d'augmenter la capacité du robot humanoïde dans des situations réelles. Dans la seconde partie, nous abordons le problème de faire naviguer deux robots humanoïdes dans un environnement encombré tout en transportant un très grand objet qui ne peut tout simplement pas être déplacé par un seul robot. Dans cette partie, plusieurs algorithmes et concepts présentés dans la partie précédente sont réutilisés et modifiés afin de convenir à un système comportant deux robot humanoides. Entre autres, nous avons un algorithme de planification de mouvement multi-robots utilisant un espace d'états à faible dimension afin de trouver une trajectoire sans obstacle en utilisant la carte construite de l'environnement, ainsi qu'un contrôle en temps réel efficace de tout le corps pour contrôler les mouvements du système robot-objet-robot en boucle fermée. Aussi, plusieurs systèmes ont été ajoutés, tels que la synchronisation utilisant le décalage relatif des robots, la projection des robots sur la base de leur position des mains ainsi que l'erreur de rétroaction visuelle calculée à partir de la caméra frontale du robot. Encore une fois, nous présentons des expériences faites sur des robots Nao équipés de capteurs RGB-D montés sur leurs têtes, se déplaçant avec un objet tout en contournant d'obstacles. Nos expériences montrent qu'un objet de taille non négligeable peut être transporté sans changer physiquement le robot.
Resumo:
O presente artigo descreve e analisa um projeto realizado com duas turmas do 1o ciclo do ensino básico que trabalharam conjuntamente com robots, tomando a aprendizagem como um fenómeno intrinsecamente ligado à participação em comunidades de prática (Lave, 1996; Lave; Wenger, 1991). Pretende-se caracterizar os intervenientes, a metodologia de trabalho implementada, a descrição dos artefactos utilizados (robots e escrita de uma história) e analisar a relação dos intervenientes com os robots, os padrões de participação que se revelaram com esse tipo de trabalho, procurando enfatizar os contributos que decorrem da participação em ambientes sociais digitais para a aprendizagem dos alunos, tais como a participação e a negociação conjunta de significados, a importância dos robots e da história terem sido “construídos” pelos estudantes e a existência de um reportório partilhado e um empreendimento conjunto.