906 resultados para Classical measurement error model
Resumo:
New mathematical methods to analytically investigate linear acoustic radiation and scattering from cylindrical bodies and transducer arrays are presented. Three problems of interest involving cylinders in an infinite fluid are studied. In all the three problems, the Helmholtz equation is used to model propagation through the fluid and the beam patterns of arrays of transducers are studied. In the first problem, a method is presented to determine the omni-directional and directional far-field pressures radiated by a cylindrical transducer array in an infinite rigid cylindrical baffle. The solution to the Helmholtz equation and the displacement continuity condition at the interface between the array and the surrounding water are used to determine the pressure. The displacement of the surface of each transducer is in the direction of the normal to the array and is assumed to be uniform. Expressions are derived for the pressure radiated by a sector of the array vibrating in-phase, the entire array vibrating in-phase, and a sector of the array phase-shaded to simulate radiation from a rectangular piston. It is shown that the uniform displacement required for generating a source level of 220 dB ref. μPa @ 1m that is omni directional in the azimuthal plane is in the order of 1 micron for typical arrays. Numerical results are presented to show that there is only a small difference between the on-axis pressures radiated by phased cylindrical arrays and planar arrays. The problem is of interest because cylindrical arrays of projectors are often used to search for underwater objects. In the second problem, the errors, when using data-independent, classical, energy and split beam correlation methods, in finding the direction of arrival (DOA) of a plane acoustic wave, caused by the presence of a solid circular elastic cylindrical stiffener near a linear array of hydrophones, are investigated. Scattering from the effectively infinite cylinder is modeled using the exact axisymmetric equations of motion and the total pressures at the hydrophone locations are computed. The effect of the radius of the cylinder, a, the distance between the cylinder and the array, b, the number of hydrophones in the array, 2H, and the angle of incidence of the wave, α, on the error in finding the DOA are illustrated using numerical results. For an array that is about 30 times the wavelength and for small angles of incidence (α<10), the error in finding the DOA using the energy method is less than that using the split beam correlation method with beam steered to α; and in some cases, the error increases when b increases; and the errors in finding the DOA using the energy method and the split beam correlation method with beam steered to α vary approximately as a7 / 4 . The problem is of interest because elastic stiffeners – in nearly acoustically transparent sonar domes that are used to protect arrays of transducers – scatter waves that are incident on it and cause an error in the estimated direction of arrival of the wave. In the third problem, a high-frequency ray-acoustics method is presented and used to determine the interior pressure field when a plane wave is normally incident on a fluid cylinder embedded in another infinite fluid. The pressure field is determined by using geometrical and physical acoustics. The interior pressure is expressed as the sum of the pressures due to all rays that pass through a point. Numerical results are presented for ka = 20 to 100 where k is the acoustic wavenumber of the exterior fluid and a is the radius of the cylinder. The results are in good agreement with those obtained using field theory. The directional responses, to the plane wave, of sectors of a circular array of uniformly distributed hydrophones in the embedded cylinder are then computed. The sectors are used to simulate linear arrays with uniformly distributed normals by using delays. The directional responses are compared with the output from an array in an infinite homogenous fluid. These outputs are of interest as they are used to determine the direction of arrival of the plane wave. Numerical results are presented for a circular array with 32 hydrophones and 12 hydrophones in each sector. The problem is of interest because arrays of hydrophones are housed inside sonar domes and acoustic plane waves from distant sources are scattered by the dome filled with fresh water and cause deterioration in the performance of the array.
Resumo:
Identification and Control of Non‐linear dynamical systems are challenging problems to the control engineers.The topic is equally relevant in communication,weather prediction ,bio medical systems and even in social systems,where nonlinearity is an integral part of the system behavior.Most of the real world systems are nonlinear in nature and wide applications are there for nonlinear system identification/modeling.The basic approach in analyzing the nonlinear systems is to build a model from known behavior manifest in the form of system output.The problem of modeling boils down to computing a suitably parameterized model,representing the process.The parameters of the model are adjusted to optimize a performanace function,based on error between the given process output and identified process/model output.While the linear system identification is well established with many classical approaches,most of those methods cannot be directly applied for nonlinear system identification.The problem becomes more complex if the system is completely unknown but only the output time series is available.Blind recognition problem is the direct consequence of such a situation.The thesis concentrates on such problems.Capability of Artificial Neural Networks to approximate many nonlinear input-output maps makes it predominantly suitable for building a function for the identification of nonlinear systems,where only the time series is available.The literature is rich with a variety of algorithms to train the Neural Network model.A comprehensive study of the computation of the model parameters,using the different algorithms and the comparison among them to choose the best technique is still a demanding requirement from practical system designers,which is not available in a concise form in the literature.The thesis is thus an attempt to develop and evaluate some of the well known algorithms and propose some new techniques,in the context of Blind recognition of nonlinear systems.It also attempts to establish the relative merits and demerits of the different approaches.comprehensiveness is achieved in utilizing the benefits of well known evaluation techniques from statistics. The study concludes by providing the results of implementation of the currently available and modified versions and newly introduced techniques for nonlinear blind system modeling followed by a comparison of their performance.It is expected that,such comprehensive study and the comparison process can be of great relevance in many fields including chemical,electrical,biological,financial and weather data analysis.Further the results reported would be of immense help for practical system designers and analysts in selecting the most appropriate method based on the goodness of the model for the particular context.
Resumo:
Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.This dissertation contributes to an architecture oriented code validation, error localization and optimization technique assisting the embedded system designer in software debugging, to make it more effective at early detection of software bugs that are otherwise hard to detect, using the static analysis of machine codes. The focus of this work is to develop methods that automatically localize faults as well as optimize the code and thus improve the debugging process as well as quality of the code.Validation is done with the help of rules of inferences formulated for the target processor. The rules govern the occurrence of illegitimate/out of place instructions and code sequences for executing the computational and integrated peripheral functions. The stipulated rules are encoded in propositional logic formulae and their compliance is tested individually in all possible execution paths of the application programs. An incorrect sequence of machine code pattern is identified using slicing techniques on the control flow graph generated from the machine code.An algorithm to assist the compiler to eliminate the redundant bank switching codes and decide on optimum data allocation to banked memory resulting in minimum number of bank switching codes in embedded system software is proposed. A relation matrix and a state transition diagram formed for the active memory bank state transition corresponding to each bank selection instruction is used for the detection of redundant codes. Instances of code redundancy based on the stipulated rules for the target processor are identified.This validation and optimization tool can be integrated to the system development environment. It is a novel approach independent of compiler/assembler, applicable to a wide range of processors once appropriate rules are formulated. Program states are identified mainly with machine code pattern, which drastically reduces the state space creation contributing to an improved state-of-the-art model checking. Though the technique described is general, the implementation is architecture oriented, and hence the feasibility study is conducted on PIC16F87X microcontrollers. The proposed tool will be very useful in steering novices towards correct use of difficult microcontroller features in developing embedded systems.
Resumo:
We present a continuum model for doped manganites which consist of two species of quantum spin-1 / 2 fermions interacting with classical spin fields. The phase structure at zero temperature turns out to be considerably rich: antiferromagnetic insulator, antiferromagnetic two band conducting, canted two band conducting, canted one band conducting, and ferromagnetic one band conducting phases are identified, all of them being stable against phase separation. There are also regions in the phase diagram where phase separation occurs
Resumo:
Spanning avalanches in the 3D Gaussian Random Field Ising Model (3D-GRFIM) with metastable dynamics at T=0 have been studied. Statistical analysis of the field values for which avalanches occur has enabled a Finite-Size Scaling (FSS) study of the avalanche density to be performed. Furthermore, a direct measurement of the geometrical properties of the avalanches has confirmed an earlier hypothesis that several types of spanning avalanches with two different fractal dimensions coexist at the critical point. We finally compare the phase diagram of the 3D-GRFIM with metastable dynamics with the same model in equilibrium at T=0.
Resumo:
Severe local storms, including tornadoes, damaging hail and wind gusts, frequently occur over the eastern and northeastern states of India during the pre-monsoon season (March-May). Forecasting thunderstorms is one of the most difficult tasks in weather prediction, due to their rather small spatial and temporal extension and the inherent non-linearity of their dynamics and physics. In this paper, sensitivity experiments are conducted with the WRF-NMM model to test the impact of convective parameterization schemes on simulating severe thunderstorms that occurred over Kolkata on 20 May 2006 and 21 May 2007 and validated the model results with observation. In addition, a simulation without convective parameterization scheme was performed for each case to determine if the model could simulate the convection explicitly. A statistical analysis based on mean absolute error, root mean square error and correlation coefficient is performed for comparisons between the simulated and observed data with different convective schemes. This study shows that the prediction of thunderstorm affected parameters is sensitive to convective schemes. The Grell-Devenyi cloud ensemble convective scheme is well simulated the thunderstorm activities in terms of time, intensity and the region of occurrence of the events as compared to other convective schemes and also explicit scheme
Resumo:
Refiners today operate their equipment for prolonged periods without shutdown. This is primarily due to the increased pressures of the market resulting in extended shutdown-to-shutdown intervals. This places extreme demands on the reliability of the plant equipment. The traditional methods of reliability assurance, like Preventive Maintenance, Predictive Maintenance and Condition Based Maintenance become inadequate in the face of such demands. The alternate approaches to reliability improvement, being adopted the world over are implementation of RCFA programs and Reliability Centered Maintenance. However refiners and process plants find it difficult to adopt this standardized methodology of RCM mainly due to the complexity and the large amount of analysis that needs to be done, resulting in a long drawn out implementation, requiring the services of a number of skilled people. These results in either an implementation restricted to only few equipment or alternately, one that is non-standard. The paper presents the current models in use, the core requirements of a standard RCM model, the alternatives to classical RCM, limitations in the existing model, classical RCM and available alternatives to RCM and will then go on to present an ‗Accelerated‘ approach to RCM implementation, that, while ensuring close conformance to the standard, does not place a large burden on the implementers
Resumo:
Digitales stochastisches Magnetfeld-Sensorarray Stefan Rohrer Im Rahmen eines mehrjährigen Forschungsprojektes, gefördert von der Deutschen Forschungsgesellschaft (DFG), wurden am Institut für Mikroelektronik (IPM) der Universität Kassel digitale Magnetfeldsensoren mit einer Breite bis zu 1 µm entwickelt. Die vorliegende Dissertation stellt ein aus diesem Forschungsprojekt entstandenes Magnetfeld-Sensorarray vor, das speziell dazu entworfen wurde, um digitale Magnetfelder schnell und auf minimaler Fläche mit einer guten räumlichen und zeitlichen Auflösung zu detektieren. Der noch in einem 1,0µm-CMOS-Prozess gefertigte Test-Chip arbeitet bis zu einer Taktfrequenz von 27 MHz bei einem Sensorabstand von 6,75 µm. Damit ist er das derzeit kleinste und schnellste digitale Magnetfeld-Sensorarray in einem Standard-CMOS-Prozess. Konvertiert auf eine 0,09µm-Technologie können Frequenzen bis 1 GHz erreicht werden bei einem Sensorabstand von unter 1 µm. In der Dissertation werden die wichtigsten Ergebnisse des Projekts detailliert beschrieben. Basis des Sensors ist eine rückgekoppelte Inverter-Anordnung. Als magnetfeldsensitives Element dient ein auf dem Hall-Effekt basierender Doppel-Drain-MAGFET, der das Verhalten der Kippschaltung beeinflusst. Aus den digitalen Ausgangsdaten kann die Stärke und die Polarität des Magnetfelds bestimmt werden. Die Gesamtanordnung bildet einen stochastischen Magnetfeld-Sensor. In der Arbeit wird ein Modell für das Kippverhalten der rückgekoppelten Inverter präsentiert. Die Rauscheinflüsse des Sensors werden analysiert und in einem stochastischen Differentialgleichungssystem modelliert. Die Lösung der stochastischen Differentialgleichung zeigt die Entwicklung der Wahrscheinlichkeitsverteilung des Ausgangssignals über die Zeit und welche Einflussfaktoren die Fehlerwahrscheinlichkeit des Sensors beeinflussen. Sie gibt Hinweise darauf, welche Parameter für das Design und Layout eines stochastischen Sensors zu einem optimalen Ergebnis führen. Die auf den theoretischen Berechnungen basierenden Schaltungen und Layout-Komponenten eines digitalen stochastischen Sensors werden in der Arbeit vorgestellt. Aufgrund der technologisch bedingten Prozesstoleranzen ist für jeden Detektor eine eigene kompensierende Kalibrierung erforderlich. Unterschiedliche Realisierungen dafür werden präsentiert und bewertet. Zur genaueren Modellierung wird ein SPICE-Modell aufgestellt und damit für das Kippverhalten des Sensors eine stochastische Differentialgleichung mit SPICE-bestimmten Koeffizienten hergeleitet. Gegenüber den Standard-Magnetfeldsensoren bietet die stochastische digitale Auswertung den Vorteil einer flexiblen Messung. Man kann wählen zwischen schnellen Messungen bei reduzierter Genauigkeit und einer hohen lokalen Auflösung oder einer hohen Genauigkeit bei der Auswertung langsam veränderlicher Magnetfelder im Bereich von unter 1 mT. Die Arbeit präsentiert die Messergebnisse des Testchips. Die gemessene Empfindlichkeit und die Fehlerwahrscheinlichkeit sowie die optimalen Arbeitspunkte und die Kennliniencharakteristik werden dargestellt. Die relative Empfindlichkeit der MAGFETs beträgt 0,0075/T. Die damit erzielbaren Fehlerwahrscheinlichkeiten werden in der Arbeit aufgelistet. Verglichen mit dem theoretischen Modell zeigt das gemessene Kippverhalten der stochastischen Sensoren eine gute Übereinstimmung. Verschiedene Messungen von analogen und digitalen Magnetfeldern bestätigen die Anwendbarkeit des Sensors für schnelle Magnetfeldmessungen bis 27 MHz auch bei kleinen Magnetfeldern unter 1 mT. Die Messungen der Sensorcharakteristik in Abhängigkeit von der Temperatur zeigen, dass die Empfindlichkeit bei sehr tiefen Temperaturen deutlich steigt aufgrund der Abnahme des Rauschens. Eine Zusammenfassung und ein ausführliches Literaturverzeichnis geben einen Überblick über den Stand der Technik.
Resumo:
Im Rahmen dieser Arbeit wird eine gemeinsame Optimierung der Hybrid-Betriebsstrategie und des Verhaltens des Verbrennungsmotors vorgestellt. Die Übernahme von den im Steuergerät verwendeten Funktionsmodulen in die Simulationsumgebung für Fahrzeuglängsdynamik stellt eine effiziente Applikationsmöglichkeit der Originalparametrierung dar. Gleichzeitig ist es notwendig, das Verhalten des Verbrennungsmotors derart nachzubilden, dass das stationäre und das dynamische Verhalten, inklusive aller relevanten Einflussmöglichkeiten, wiedergegeben werden kann. Das entwickelte Werkzeug zur Übertragung der in Ascet definierten Steurgerätefunktionen in die Simulink-Simulationsumgebung ermöglicht nicht nur die Simulation der relevanten Funktionsmodule, sondern es erfüllt auch weitere wichtige Eigenschaften. Eine erhöhte Flexibilität bezüglich der Daten- und Funktionsstandänderungen, sowie die Parametrierbarkeit der Funktionsmodule sind Verbesserungen die an dieser Stelle zu nennen sind. Bei der Modellierung des stationären Systemverhaltens des Verbrennungsmotors erfolgt der Einsatz von künstlichen neuronalen Netzen. Die Auswahl der optimalen Neuronenanzahl erfolgt durch die Betrachtung des SSE für die Trainings- und die Verifikationsdaten. Falls notwendig, wird zur Sicherstellung der angestrebten Modellqualität, das Interpolationsverhalten durch Hinzunahme von Gauß-Prozess-Modellen verbessert. Mit den Gauß-Prozess-Modellen werden hierbei zusätzliche Stützpunkte erzeugt und mit einer verminderten Priorität in die Modellierung eingebunden. Für die Modellierung des dynamischen Systemverhaltens werden lineare Übertragungsfunktionen verwendet. Bei der Minimierung der Abweichung zwischen dem Modellausgang und den Messergebnissen wird zusätzlich zum SSE das 2σ-Intervall der relativen Fehlerverteilung betrachtet. Die Implementierung der Steuergerätefunktionsmodule und der erstellten Steller-Sensor-Streckenmodelle in der Simulationsumgebung für Fahrzeuglängsdynamik führt zum Anstieg der Simulationszeit und einer Vergrößerung des Parameterraums. Das aus Regelungstechnik bekannte Verfahren der Gütevektoroptimierung trägt entscheidend zu einer systematischen Betrachtung und Optimierung der Zielgrößen bei. Das Ergebnis des Verfahrens ist durch das Optimum der Paretofront der einzelnen Entwurfsspezifikationen gekennzeichnet. Die steigenden Simulationszeiten benachteiligen Minimumsuchverfahren, die eine Vielzahl an Iterationen benötigen. Um die Verwendung einer Zufallsvariablen, die maßgeblich zur Steigerung der Iterationanzahl beiträgt, zu vermeiden und gleichzeitig eine Globalisierung der Suche im Parameterraum zu ermöglichen wird die entwickelte Methode DelaunaySearch eingesetzt. Im Gegensatz zu den bekannten Algorithmen, wie die Partikelschwarmoptimierung oder die evolutionären Algorithmen, setzt die neu entwickelte Methode bei der Suche nach dem Minimum einer Kostenfunktion auf eine systematische Analyse der durchgeführten Simulationsergebnisse. Mit Hilfe der bei der Analyse gewonnenen Informationen werden Bereiche mit den bestmöglichen Voraussetzungen für ein Minimum identifiziert. Somit verzichtet das iterative Verfahren bei der Bestimmung des nächsten Iterationsschrittes auf die Verwendung einer Zufallsvariable. Als Ergebnis der Berechnungen steht ein gut gewählter Startwert für eine lokale Optimierung zur Verfügung. Aufbauend auf der Simulation der Fahrzeuglängsdynamik, der Steuergerätefunktionen und der Steller-Sensor-Streckenmodelle in einer Simulationsumgebung wird die Hybrid-Betriebsstrategie gemeinsam mit der Steuerung des Verbrennungsmotors optimiert. Mit der Entwicklung und Implementierung einer neuen Funktion wird weiterhin die Verbindung zwischen der Betriebsstrategie und der Motorsteuerung erweitert. Die vorgestellten Werkzeuge ermöglichten hierbei nicht nur einen Test der neuen Funktionalitäten, sondern auch eine Abschätzung der Verbesserungspotentiale beim Verbrauch und Abgasemissionen. Insgesamt konnte eine effiziente Testumgebung für eine gemeinsame Optimierung der Betriebsstrategie und des Verbrennungsmotorverhaltens eines Hybridfahrzeugs realisiert werden.
Resumo:
Object recognition is complicated by clutter, occlusion, and sensor error. Since pose hypotheses are based on image feature locations, these effects can lead to false negatives and positives. In a typical recognition algorithm, pose hypotheses are tested against the image, and a score is assigned to each hypothesis. We use a statistical model to determine the score distribution associated with correct and incorrect pose hypotheses, and use binary hypothesis testing techniques to distinguish between them. Using this approach we can compare algorithms and noise models, and automatically choose values for internal system thresholds to minimize the probability of making a mistake.
Resumo:
In recent years, researchers in artificial intelligence have become interested in replicating human physical reasoning talents in computers. One of the most important skills in this area is predicting how physical systems will behave. This thesis discusses an implemented program that generates algebraic descriptions of how systems of rigid bodies evolve over time. Discussion about the design of this program identifies a physical reasoning paradigm and knowledge representation approach based on mathematical model construction and algebraic reasoning. This paradigm offers several advantages over methods that have become popular in the field, and seems promising for reasoning about a wide variety of classical mechanics problems.
Resumo:
The Support Vector (SV) machine is a novel type of learning machine, based on statistical learning theory, which contains polynomial classifiers, neural networks, and radial basis function (RBF) networks as special cases. In the RBF case, the SV algorithm automatically determines centers, weights and threshold such as to minimize an upper bound on the expected test error. The present study is devoted to an experimental comparison of these machines with a classical approach, where the centers are determined by $k$--means clustering and the weights are found using error backpropagation. We consider three machines, namely a classical RBF machine, an SV machine with Gaussian kernel, and a hybrid system with the centers determined by the SV method and the weights trained by error backpropagation. Our results show that on the US postal service database of handwritten digits, the SV machine achieves the highest test accuracy, followed by the hybrid approach. The SV approach is thus not only theoretically well--founded, but also superior in a practical application.
Resumo:
We describe a method for modeling object classes (such as faces) using 2D example images and an algorithm for matching a model to a novel image. The object class models are "learned'' from example images that we call prototypes. In addition to the images, the pixelwise correspondences between a reference prototype and each of the other prototypes must also be provided. Thus a model consists of a linear combination of prototypical shapes and textures. A stochastic gradient descent algorithm is used to match a model to a novel image by minimizing the error between the model and the novel image. Example models are shown as well as example matches to novel images. The robustness of the matching algorithm is also evaluated. The technique can be used for a number of applications including the computation of correspondence between novel images of a certain known class, object recognition, image synthesis and image compression.
Resumo:
We describe a technique for finding pixelwise correspondences between two images by using models of objects of the same class to guide the search. The object models are 'learned' from example images (also called prototypes) of an object class. The models consist of a linear combination ofsprototypes. The flow fields giving pixelwise correspondences between a base prototype and each of the other prototypes must be given. A novel image of an object of the same class is matched to a model by minimizing an error between the novel image and the current guess for the closest modelsimage. Currently, the algorithm applies to line drawings of objects. An extension to real grey level images is discussed.
Resumo:
Stimuli outside classical receptive fields significantly influence the neurons' activities in primary visual cortex. We propose that such contextual influences are used to segment regions by detecting the breakdown of homogeneity or translation invariance in the input, thus computing global region boundaries using local interactions. This is implemented in a biologically based model of V1, and demonstrated in examples of texture segmentation and figure-ground segregation. By contrast with traditional approaches, segmentation occurs without classification or comparison of features within or between regions and is performed by exactly the same neural circuit responsible for the dual problem of the grouping and enhancement of contours.