998 resultados para Chiral recognition
Multi-colour switching of polymer stabilized chiral nematic liquid crystal devices - art. no. 65870X
Resumo:
Boltzmann machines offer a new and exciting approach to automatic speech recognition, and provide a rigorous mathematical formalism for parallel computing arrays. In this paper we briefly summarize Boltzmann machine theory, and present results showing their ability to recognize both static and time-varying speech patterns. A machine with 2000 units was able to distinguish between the 11 steady-state vowels in English with an accuracy of 85%. The stability of the learning algorithm and methods of preprocessing and coding speech data before feeding it to the machine are also discussed. A new type of unit called a carry input unit, which involves a type of state-feedback, was developed for the processing of time-varying patterns and this was tested on a few short sentences. Use is made of the implications of recent work into associative memory, and the modelling of neural arrays to suggest a good configuration of Boltzmann machines for this sort of pattern recognition.
Resumo:
VODIS II, a research system in which recognition is based on the conventional one-pass connected-word algorithm extended in two ways, is described. Syntactic constraints can now be applied directly via context-free-grammar rules, and the algorithm generates a lattice of candidate word matches rather than a single globally optimal sequence. This lattice is then processed by a chart parser and an intelligent dialogue controller to obtain the most plausible interpretations of the input. A key feature of the VODIS II architecture is that the concept of an abstract word model allows the system to be used with different pattern-matching technologies and hardware. The current system implements the word models on a real-time dynamic-time-warping recognizer.
Resumo:
This paper describes results obtained using the modified Kanerva model to perform word recognition in continuous speech after being trained on the multi-speaker Alvey 'Hotel' speech corpus. Theoretical discoveries have recently enabled us to increase the speed of execution of part of the model by two orders of magnitude over that previously reported by Prager & Fallside. The memory required for the operation of the model has been similarly reduced. The recognition accuracy reaches 95% without syntactic constraints when tested on different data from seven trained speakers. Real time simulation of a model with 9,734 active units is now possible in both training and recognition modes using the Alvey PARSIFAL transputer array. The modified Kanerva model is a static network consisting of a fixed nonlinear mapping (location matching) followed by a single layer of conventional adaptive links. A section of preprocessed speech is transformed by the non-linear mapping to a high dimensional representation. From this intermediate representation a simple linear mapping is able to perform complex pattern discrimination to form the output, indicating the nature of the speech features present in the input window.
Resumo:
Four types of neural networks which have previously been established for speech recognition and tested on a small, seven-speaker, 100-sentence database are applied to the TIMIT database. The networks are a recurrent network phoneme recognizer, a modified Kanerva model morph recognizer, a compositional representation phoneme-to-word recognizer, and a modified Kanerva model morph-to-word recognizer. The major result is for the recurrent net, giving a phoneme recognition accuracy of 57% from the si and sx sentences. The Kanerva morph recognizer achieves 66.2% accuracy for a small subset of the sa and sx sentences. The results for the word recognizers are incomplete.
Resumo:
The use of variable-width features (prosodics, broad structural information etc.) in large vocabulary speech recognition systems is discussed. Although the value of this sort of information has been recognized in the past, previous approaches have not been widely used in speech systems because either they have not been robust enough for realistic, large vocabulary tasks or they have been limited to certain recognizer architectures. A framework for the use of variable-width features is presented which employs the N-Best algorithm with the features being applied in a post-processing phase. The framework is flexible and widely applicable, giving greater scope for exploitation of the features than previous approaches. Large vocabulary speech recognition experiments using TIMIT show that the application of variable-width features has potential benefits.
Resumo:
This paper reports our experiences with a phoneme recognition system for the TIMIT database which uses multiple mixture continuous density monophone HMMs trained using MMI. A comprehensive set of results are presented comparing the ML and MMI training criteria for both diagonal and full covariance models. These results using simple monophone HMMs show clear performance gains achieved by MMI training, and are comparable to the best reported by others including those which use context-dependent models. In addition, the paper discusses a number of performance and implementation issues which are crucial to successful MMI training.
Resumo:
A novel pair of the E- and Z-isomeric 1R,4R-2-(4-heptyloxyphenyl)-benzylidene-p-menthan-3-ones has been prepared and the influence of distinctions in their molecular geometry on macroscopic properties of liquid crystal systems with the induced supra-molecular helical structure has been studied. The significantly lower helical twisting power of the chiral Z-isomer in comparison with that of E- one has been confirmed in the case of induced cholesteric systems based on 4-pentyl-4-cyanobiphenyl. The phase behavior and ferroelectric characteristics have been investigated for smectic-C* compositions based on the eutectic mixture of the homological 4-hexyloxyphenyl-4'-hexyloxy- and 4-hexyloxyphenyl-4'-octyloxybenzoates containing the novel isomeric chiral dopants. The spontaneous polarisation of the opposite signs induced by the isomeric chiral components has been revealed for the compositions studied. Distinctions in phase states, absolute values of the spontaneous polarization, smectic tilt angle and rotation viscosity of the systems obtained are discussed.
Resumo:
The first experimental demonstration of unique polarizatioon characteristics are reported. It is believed that the strong polarization effects reported result from the chirality imposed by the patterns of gammadions enhanced by plasmon effects due to the nanostructuring of the metal film in which they are cut. It is clear that such structures has the potential to yield many new and intriguing applications in optoelectronics and other areas.