986 resultados para Central Basin, Pacific Ocean
Resumo:
The minor-element composition of concentric layers within a single ferromanganese nodule from the eastern North Pacific exhibits strong correlations with Fe and Mn contents but appears to be independent of pronounced mineralogic variations. On the basis of these correlations, the elemental composition of individual layers apparently is controlled by the relative contribution of two sources: seawater, and interstitial water of associated sediment. In contrast, the mineralogy of the nodule, consisting of birnessite in the outer few layers and todorokite in the inner layers, is considered to be a function of nodule diagenesis.
Resumo:
A radioisotope energy-dispersive X-ray (EDX) system has been used on board the German research vessel "Valdivia" during an exploration expedition in the northern equatorial Pacific in 1973. The instrumentation used consisted of an X-ray detection system incorporating a 30 mm2 effective-area Si (Li) detector with a measured energy resolution of 195 eV for Mn K alpha X-rays, standard nuclear electronics, a 1024-channel analyser and a data read-out unit. The X-ray spectra in the manganese-nodule samples were excited by a 30-mCi 238Pu source. The six elements Mn, Fe, Co, Ni, Cu and Zn were analysed on board. Precision values for the analyses were less than 3% for Mn, Fe, Ni, Cu and Zn and about 5% for Co. A total amount of 350 analyses was carried out during a one-month cruise. Average contents of 190 analysed whole manganese-nodule samples from all the sampling sites of the covered area were 23.3% Mn, 6.7% Fe, 0.23% Co, 1.16% Ni, 0.94% Cu and 0.10% Zn. The average content of the base metals expressed as the sum of the Co, Ni, Cu and Zn contents was 2.48%. A linear relationship between Mn and Ni in all analysed samples, including whole manganese-nodule samples, zones of manganese nodules and manganese crusts, was observed. The Mn/Ni ratio calculated by regression analysis was 23.0. Zonal variations of the chemical contents of the six elements in the manganese nodules were found. A size classification of the manganese nodules has been suggested. Geochemical correlations of Cu and Ni versus Mn/Fe in the investigated samples are given.
Resumo:
Paleotopographic models of the West Antarctic margin, which are essential for robust simulations of paleoclimate scenarios, lack information on sediment thickness and geodynamic conditions, resulting in large uncertainties. A new total sediment thickness grid spanning the Ross Sea-Amundsen Sea-Bellingshausen Sea basins is presented and is based on all the available seismic reflection, borehole, and gravity modeling data offshore West Antarctica. This grid was combined with NGDC's global 5 arc minute grid of ocean sediment thickness (Whittaker et al., 2013, doi:10.1002/ggge.20181) and extends the NGDC grid further to the south. Sediment thickness along the West Antarctic margin tends to be 3-4 km larger than previously assumed. The sediment volume in the Bellingshausen, Amundsen, and Ross Sea basins amounts to 3.61, 3.58, and 2.78 million km³, respectively. The residual basement topography of the South Pacific has been revised and the new data show an asymmetric trend over the Pacific-Antarctic Ridge. Values are anomalously high south of the spreading ridge and in the Ross Sea area, where the topography seems to be affected by persistent mantle processes. In contrast, the basement topography offshore Marie Byrd Land cannot be attributed to dynamic topography, but rather to crustal thickening due to intraplate volcanism. Present-day dynamic topography models disagree with the presented revised basement topography of the South Pacific, rendering paleotopographic reconstructions with such a limited dataset still fairly uncertain.
Resumo:
Manganese nodules recovered in the Pacific Ocean by the U. S. Bureau of Mines and by DeepSea Ventures Ltd. are studied for their chemical composition using X microprobe and X-ray fluorescence methods.
Resumo:
During the last deglaciation, the opposing patterns of atmospheric CO2 and radiocarbon activities (D14C) suggest the release of 14C-depleted CO2 from old carbon reservoirs. Although evidences point to the deep Pacific as a major reservoir of this 14C-depleted carbon, its extent and evolution still need to be constrained. Here we use sediment cores retrieved along a South Pacific transect to reconstruct the spatio-temporal evolution of D14C over the last 30,000 years. In ~2,500-3,600 m water depth, we find 14C-depleted deep waters with a maximum glacial offset to atmospheric 14C (DD14C = -1,000 per mil). Using a box model, we test the hypothesis that these low values might have been caused by an interaction of aging and hydrothermal CO2 influx. We observe a rejuvenation of circumpolar deep waters synchronous and potentially contributing to the initial deglacial rise in atmospheric CO2. These findings constrain parts of the glacial carbon pool to the deep South Pacific.
Resumo:
Oxygen and carbon isotope analyses show that the biserial forarniniferal genus Streptochilus, which was originally described from pelagic sediments on the Eauripik Rise and Ontong Java Plateau, lived deep in the upper water column within the oxygen minimum layer. The species of Streptochilus average from 4 to 19% of the foraminiferal assemblages in which benthic forms compose less than 1 or 2%. Specimens of Streptochilus are selectively dissolved when in contact with the bottom water mass. Their rapid evolutionary turnover of less than a few million years and their wide areal distribution in the equatorial Indo-Pacific are indicative of planktonic foraminifera. Aside from usefulness of the species of Streptochilus as stratigraphic indices, these Neogene biserial planktonic foraminifera are potential indices of paleoceanographic stratification.
Resumo:
Hydrogenous manganese nodules form on the ocean floor by slow authigenic precipitation (1-6 mm/Ma) of the oxyhydroxides of manganese and iron that continuously scavenge trace elements from the marine environment. Consequently, these nodules represent independent marine deposits useful for the study of the chemical signatures of the paleomarine environments. The results presented are a continuation of a study of the Zetes-3D nodule from the Pacific Ocean. It is a large (24x17x10 cm) hydrogenous nodule whose slow growth rate of 1.3 mm/Ma was detremined using 10Be techniques. A positive cerium anomaly is observed throughout the nodule and its Ir content indicates a sharp spike at 54-62 Ma in fair agreement with the K-T event.
Resumo:
We determined phosphorus (P) concentrations in Leg 138 sediment samples from Sites 844, 846, and 851, using a sequential extraction technique to identify the P associated with five sedimentary components. Total concentrations of P (sum of the five components) ranged from 4 to 35 µmol P/g sediment, with mean values relatively similar between the three sites (11, 14, and 12 for Sites 844,846, and 851, respectively). Authigenic/biogenic P was the most important component in terms of percentage of total P (about 75%), with iron-bound P (13%), adsorbed P (2%-9%), and organic P (4%) of secondary importance; detrital P was a minor P sink (1%) in these sediments. Profiles of adsorbed P and iron-bound P show decreasing concentrations with age, indicating that these components have been affected by diagenesis and reorganization of P. A peak in iron-bound P may reflect higher fluxes of hydrothermally derived Fe to eastern equatorial Pacific Ocean sediments from 11 to 8 Ma. Lower detrital P values for western Site 851 reflect a greater distance of this site from a terrigenous source area, compared to that of Sites 844 and 846. Phosphorus mass accumulation rates (P-MARs; units of µmol P/cm**2/k.y.) were calculated using total P concentrations (not including the minor and oceanically unreactive detrital P component) and sedimentation rates and dry-bulk densities averaged over time intervals of 0.5 m.y. P-MARs generally decrease from 17 Ma to the present. Eastern transect Sites 844 and 846 display a decrease in P-MARs from about 30 to 10 in the interval from 17 to 8 Ma, while western transect Site 851 is highly variable during this interval. P-MARs increase to about 45 and stay relatively high from 8 to 6 Ma, then decrease toward the present to some of the lowest values of the record (about 10). The general trend of high P-MARs at about 6 Ma and decreasing values toward the present is correlated with other geochemical and sedimentary trends through this interval and may reflect (1) a change in net sediment and P burial, (2) a reorganization of fluxes with no change of net burial, or (3) a combination of the two.
Resumo:
The usefulness of cosmogenic beryllium-10 (half life = 2.5 Ma) for studying the rates of accumulation of ferromanganese nodules is reported based on its measured depth distribution in the top 20 mm of these deposits. Accumulation rates have been obtained in the range of 1 to 4 mm/Ma, which are in good agreement with rates determined using the 230Th method on the same nodules. The use of 10Be offers promise in extending the dating to the outer few cm of the nodules. This contrasts with conventional methods using 230Th and 231Pa isotopes which, due to their comparatively short half lives, are limited to a few mm at the surface of the nodules. Detailed studies of 10Be in the manganese deposits coupled with other trace element analyses should prove valuable in understanding the processes of formation of these deposits and the chronology of events recorded by them.