990 resultados para Cement materials


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various NixCo1-x alloys (with x varying from 0-60 wt%, Ni: nickel, Co: cobalt) were prepared by vacuum arc melting and mixed with polyvinylidene fluoride (PVDF) to design lightweight, flexible and corrosion resistant materials that can attenuate electromagnetic radiation. The saturation magnetization scaled with the fraction of Co in the alloy. Two key properties such as high-magnetic permeability and high-electrical conductivity were targeted. While the former was achieved using a Ni-Co alloy, multiwalled carbon nanotubes (CNTs) in the composites accomplished the latter. A unique approach was adopted to prepare the composites wherein PVDF powder along with CNTs and Ni-Co flakes were made into a paste, using a solvent, followed by hot pressing. Interestingly, CNTs facilitated in uniform dispersion of the Ni-Co alloy in PVDF, as manifested from synergistic improvement in the electrical conductivity. A significant improvement in the shielding effectiveness (41 dB, >99.99% attenuation) was achieved with the addition of 50 wt% of Ni40Co60 alloy and 3 wt% CNTs. Intriguingly, due to the unique processing technique adopted here, the flexibility of the composites was retained and more interestingly, the composites were resistant to corrosion as compared to only Ni-Co alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rechargeable batteries based on Li and Na ions have been growing leaps and bounds since their inception in the 1970s. They enjoy significant attention from both the fundamental science point of view and practical applications ranging from portable electronics to hybrid vehicles and grid storage. The steady demand for building better batteries calls for discovery, optimisation and implementation of novel positive insertion (cathode) materials. In this quest, chemists have tried to unravel many future cathode materials by taking into consideration their eco-friendly synthesis, material/process economy, high energy density, safety, easy handling and sustainability. Interestingly, sulfate-based cathodes offer a good combination of sustainable syntheses and high energy density owing to their high-voltage operation, stemming from electronegative SO42- units. This review delivers a sneak peak at the recent advances in the discovery and development of sulfate-containing cathode materials by focusing on their synthesis, crystal structure and electrochemical performance. Several family of cathodes are independently discussed. They are 1) fluorosulfates AMSO(4)F], 2) bihydrated fluorosulfates AMSO(4)F2H(2)O], 3) hydroxysulfate AMSO(4)OH], 4) bisulfates A(2)M(SO4)(2)], 5) hydrated bisulfates A(2)M(SO4)(2)nH(2)O], 6) oxysulfates Fe-2(SO4)(2)O] and 7) polysulfates A(2)M(2)(SO4)(3)]. A comparative study of these sulfate-based cathodes has been provided to offer an outlook on the future development of high-voltage polyanionic cathode materials for next-generation batteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Balanced white light emitting systems are important for applications in electronic devices. Of all types of white light emitting materials, gels have the special advantage of easy processability. Here we report two white light emitting gels, which are based on lanthanide cholate self-assembly. The components are commercially available and the gels are prepared by simply sonicating their aqueous solutions (1-3min), unlike any other known white light emitting systems. Their CIE co-ordinates, calculated from the luminescence data, fall in the white light range with a correlated color temperature of ca. 5600 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rechargeable lithium-ion battery remains the leading electrochemical energy-storage device, albeit demanding steady effort of design and development of superior cathode materials. Polyanionic framework compounds are widely explored in search for such cathode contenders. Here, lithium metal borate (LiMBO3) forms a unique class of insertion materials having the lowest weight polyanion (i. e., BO33-), thus offering the highest possible theoretical capacity (ca. 220 mAh/g). Since the first report in 2001, LiMBO3 has rather slow progress in comparison to other polyanionic cathode systems based on PO4, SO4, and SiO4. The current review gives a sneak peak to the progress on LiMBO3 cathode systems in the last 15 years highlighting their salient features and impediments in cathode implementation. The synthesis and structural aspects of borate family are described along with the critical analysis of the electrochemical performance of borate family of insertion materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Luminescent organic materials have attracted significant attention in recent times owing to their opportunities in various functional applications. Interestingly, unlike fluorescence, opportunities hidden within the phosphorescence properties of organic compounds have received considerably less attention even until last few years. It is only in the second decade of the 21st century, within a time span of less than last 5 years, that the concepts and prospects of organic compounds as phosphorescent materials have evolved rapidly. The previously perceived limitations of organic compounds as phosphorescent materials have been overcome and several molecules have been designed using old and new concepts, such as heavy atom effects, matrix assisted isolation, hydrogen bonding and halogen bonding, thereby gaining access to a significant number of materials with efficient phosphorescent features. In addition, significant improvements have been made in the development of RTP (room temperature phosphorescent) materials, which can be used under ambient conditions. In this review, we bring together the vastly different approaches developed by various researchers to understand and appreciate this recent revolution in organic luminescent materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fungus-growing termites are involved in many ecological processes and play a central role in influencing soil dynamics in the tropics. The physical and chemical properties of their nest structures have been largely described; however less information is available concerning the relatively temporary structures made above-ground to access food items and protect the foraging space (the soil `sheetings'). This study investigated whether the soil physical and chemical properties of these constructions are constant or if they vary depending on the type of food they cover. Soil samples and soil sheetings were collected in a forest in India, from leaves on the ground (LEAF), fallen branches (WOOD), and vertical soil sheetings covering the bark of trees (TREE). In this environment, termite diversity was dominated by Odontotermes species, and especially Odontotermes feae and Odontotermes obesus. However, there was no clear niche differentiation and, for example, O. feae termites were found on all the materials. Compared with the putative parent soil (control), TREE sheetings showed the greatest (and most significant) differences (higher clay content and smaller clay particle sizes, lower C and N content and smaller delta C-13 and delta N-15), while LEAF sheetings were the least modified, though still significantly different than the control soil. We suggest that the termite diversity is a less important driver of potential soil modification than sheeting diversity. Further, there is evidence that construction properties are adapted to their prospective life-span, with relatively long-lasting structures being most different from the parent soil. (C) 2015 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unreinforced masonry (URM) structures that are in need of repair and rehabilitation constitute a significant portion of building stock worldwide. The successful application of fiber-reinforced polymers (FRP) for repair and retrofitting of reinforced-concrete (RC) structures has opened new avenues for strengthening URM structures with FRP materials. The present study analyzes the behavior of FRP-confined masonry prisms under monotonic axial compression. Masonry comprising of burnt clay bricks and cement-sand mortar (generally adopted in the Indian subcontinent) having E-b/E-m ratio less than one is employed in the study. The parameters considered in the study are, (1) masonry bonding pattern, (2) inclination of loading axis to the bed joint, (3) type of FRP (carbon FRP or glass FRP), and (4) grade of FRP fabric. The performance of FRP-confined masonry prisms is compared with unconfined masonry prisms in terms of compressive strength, modulus of elasticity and stress-strain response. The results showed an enhancement in compressive strength, modulus of elasticity, strain at peak stress, and ultimate strain for FRP-confined masonry prisms. The FRP confinement of masonry resulted in reducing the influence of the inclination of the loading axis to the bed joint on the compressive strength and failure pattern. Various analytical models available in the literature for the prediction of compressive strength of FRP-confined masonry are assessed. New coefficients are generated for the analytical model by appending experimental results of the current study with data available in the literature. (C) 2014 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, fluoranthene-based derivatives with a high thermal stability were synthesized for applications in organic electroluminescent devices. The two derivatives synthesized in this study, bis(4-(7,9,10-triphenylfluoranthen-8-yl)phenyl)sulfane (TPFDPS) and 2,8-bis(7,9,10-triphenylfluoranthen-8-yl)dibenzob,d]thiophene (TPFDBT), were characterized by cyclic voltammetry, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). TPFDPS exhibits a high T-g of 210 degrees C while TPFDBT is crystalline in nature. Both the derivatives are thermally stable up to 500 degrees C. The charge transport studies reveal predominant electron transport properties. Subsequently, we fabricated blue OLEDs with 2-tert-butyl-9,10-bis-(beta-naphthyl)-anthracene (TBADN) as the emitting layer to demonstrate the applications of these molecules as an electron transporting layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein we report the synthesis, characterization, and potential application of his (4- (7,9,10-triphenylfluoranthen-8-yl)pheny)sulfone (TPFDPSO2) and 2,8-bis (7,9,10-triphenylfluoranthen-8-yl) dibenzo b, d]-thiophene 5,5-dioxide (TPFDBTO2) as electron transport as well as light-emitting materials. These fluoranthene derivatives were synthesized by oxidation of their corresponding parent sulfide compounds, which were prepared via Diels-Alder reaction. These materials exhibit deep blue fluorescence emission in both solution and thin film, high photoluminescence quantum yield (PLQY), thermal and electrochemical stability over a wide potential range. Hole- and electron-only devices were fabricated to study the charge transport characteristics, and predominant electron transport property comparable with that of a well-known electron transport material, Alq(3), was observed. Furthermore, bilayer electroluminescent devices were fabricated utilizing these fluoranthene derivatives as electron transport as well as emitting layer, and device performance was compared with that of their parent sulfide molecules. The electroluminescence (EL) devices fabricated with these molecules displayed bright sky blue color emission and 5-fold improvement in external quantum efficiency (EQE) with respect to their parent compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we integrate two or more compliant mechanisms to get enhanced functionality for manipulating and mechanically characterizing the grasped objects of varied size (cm to sub-mm), stiffness (1e5 to 10 N/m), and materials (cement to biological cells). The concepts of spring-lever (SL) model, stiffness maps, and non-dimensional kinetoelastostatic maps are used to design composite and multi-scale compliant mechanisms. Composite compliant mechanisms comprise two or more different mechanisms within a single elastic continuum while multi-scale ones possess the additional feature of substantial difference in the sizes of the mechanisms that are combined into one. We present three applications: (i) a composite compliant device to measure the failure load of the cement samples; (ii) a composite multi-scale compliant gripper to measure the bulk stiffness of zebrafish embryos; and (iii) a compliant gripper combined with a negative-stiffness element to reduce the overall stiffness. The prototypes of all three devices are made and tested. The cement sample needed a breaking force of 22.5 N; the zebrafish embryo is found to have bulk stiffness of about 10 N/m; and the stiffness of a compliant gripper was reduced by 99.8 % to 0.2 N/m.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyaniline and graphene oxide composite on activated carbon cum reduced graphene oxide-supported supercapacitor electrodes are fabricated and electrochemically characterized in a three-electrode cell assembly. Attractive supercapacitor performance, namely high-power capability and cycling stability for graphene oxide/polyaniline composite, is observed owing to the layered and porous-polymeric-structured electrodes. Based on the materials characterization data in a three-electrode cell assembly, 1 V supercapacitor devices are developed and performance tested. A comparative study has also been conducted for polyaniline and graphene oxide/polyaniline composite-based 1 V supercapacitors for comprehending the synergic effect of graphene oxide and polyaniline. Graphene oxide/polyaniline composite-based capacitor that exhibits about 100 F g(-1) specific capacitance with faradaic efficiency in excess of 90% has its energy and power density values of 14 Wh kg(-1) and 72 kW kg(-1), respectively. Cycle-life data for over 1000 cycles reflect 10% capacitance degradation for graphene oxide/polyaniline composite supercapacitor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrafine-grained (UFG) materials with grain sizes in the submicrometer or nanometer range may be prepared through the application of severe plastic deformation (SPD) to bulk coarse-grained solids. These materials generally exhibit high strength but only very limited ductility in low-temperature testing, thereby giving rise to the so-called paradox of strength and ductility. This paradox is examined and a new quantitative diagram is presented which permits the easy insertion of experimental data. It is shown that relatively simple procedures are available for achieving both high strength and high ductility in UFG materials including processing the material to a very high strain and/or applying a very short-term anneal immediately after the SPD processing. Significant evidence is now available demonstrating the occurrence of grain boundary sliding in these materials at low temperatures, where this is attributed to the presence of non-equilibrium grain boundaries and the occurrence of enhanced diffusion along these boundaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study deals with the diffusion and phase transition behaviour of paraffin reinforced with carbon nano-additives namely graphene oxide (GO) and surface functionalized single walled carbon nanotubes (SWCNT). Bulk disordered systems of paraffin hydrocarbons impregnated with carbon nano-additives have been generated in realistic equilibrium conformations for potential application as latent heat storage systems. Ab initio molecular dynamics(MD) in conjugation with COMPASS forcefield has been implemented using periodic boundary conditions. The proposed scheme allows determination of optimum nano-additive loading for improving thermo-physical properties through analysis of mass, thermal and transport properties; and assists in determination of composite behaviour and related performance from microscopic point of view. It was observed that nanocomposites containing 7.8% surface functionalised SWCNT and 55% GO loading corresponds to best latent heat storage system. The propounded methodology could serve as a by-pass route for economically taxing and iterative experimental procedures required to attain the optimum composition for best performance. The results also hint at the large unexplored potential of ab-initio classical MD techniques for predicting performance of new nanocomposites for potential phase change material applications. (C) 2015 Author(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mutually miscible homopolymer (here polymethyl methacrylate; PMMA) was employed to tailor the interfacial properties of immiscible polycarbonate/styrene acrylonitrile (PC/SAN) blends. In order to design materials that can shield microwave radiation, one of the key properties i.e. electrical conductivity was targeted here using a conducting inclusion; multiwall carbon nanotubes (MWNTs). Owing to higher polarity, MWNTs prefer PC over SAN which though enhance the electrical conductivity of the blends, they don't improve the interfacial properties and results in poor mechanical properties. Hence, an efficient strategy has been adopted here to simultaneously enhance the mechanical, electrical and microwave attenuation properties. Herein, the MWNTs were wrapped by PMMA via in situ polymerization of MMA (methyl methacrylate). This strategy resulted in the migration of PMMA modified MWNTs towards the blend's interface and resulted in an effective stress transfer across the interface leading to improved mechanical and dynamic mechanical properties. Interestingly, the bulk electrical conductivity of the blends was also enhanced, manifesting the improved dispersion of the MWNTs. The state of dispersion of the MWNTs and the phase morphology were assessed using scanning electron microscopy. The microwave attenuation properties were evaluated using a vector network analyzer (VNA) in the X and K-u-band frequencies. The blends with PMMA wrapped MWNTs manifested a -21 dB of shielding effectiveness which suggests attenuation of more than 99% of the incoming microwave radiation. More interestingly, the attenuation constant could be tuned here employing this unique strategy. This study clearly opens a new tool box in designing materials that show improved mechanical, dynamic mechanical, electrical conductivity and microwave shielding properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tetrahedrites are natural earth-abundant minerals consisting of environmentally-friendly elements of copper and sulphur. Recently, research has been focused on the natural and synthetic minerals of tetrahedrite materials for thermoelectric applications. The thermoelectric figure of merit zT of around unity at similar to 723 K for many doped and natural tetrahedrite materials in the past 2-3 years was determined and this value is comparable to conventional p-type TE materials. In this review, a brief history of tetrahedrite materials is followed by information about its crystal structure and chemical bonding, electronic band structure and transport properties. Different synthesis approaches have been summarized. Also, this review outlines the effect of different doping elements on the thermoelectric properties of tetrahedrite materials, and the natural mineral tetrahedrite that can be used as thermoelectric materials.