964 resultados para Cd8 T-cells


Relevância:

30.00% 30.00%

Publicador:

Resumo:

NKT cells, defined as T cells expressing the NK cell marker NK1.1, are involved in tumor rejection and regulation of autoimmunity via the production of cytokines. We show in this study that two types of NKT cells can be defined on the basis of their reactivity to the monomorphic MHC class I-like molecule CD1d. One type of NKT cell is positively selected by CD1d and expresses a biased TCR repertoire together with a phenotype found on activated T cells. A second type of NKT cell, in contrast, develops in the absence of CD1d, and expresses a diverse TCR repertoire and a phenotype found on naive T cells and NK cells. Importantly, the two types of NKT cells segregate in distinct tissues. Whereas thymus and liver contain primarily CD1d-dependent NKT cells, spleen and bone marrow are enriched in CD1d-independent NKT cells. Collectively, our data suggest that recognition of tissue-specific ligands by the TCR controls localization and activation of NKT cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interleukin 7 is essential for the survival of naive T lymphocytes. Despite its importance, its cellular source in the periphery remains poorly defined. Here we report a critical function for lymph node access in T cell homeostasis and identify T zone fibroblastic reticular cells in these organs as the main source of interleukin 7. In vitro, T zone fibroblastic reticular cells were able to prevent the death of naive T lymphocytes but not of B lymphocytes by secreting interleukin 7 and the CCR7 ligand CCL19. Using gene-targeted mice, we demonstrate a nonredundant function for CCL19 in T cell homeostasis. Our data suggest that lymph nodes and T zone fibroblastic reticular cells have a key function in naive CD4(+) and CD8(+) T cell homeostasis by providing a limited reservoir of survival factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have shown previously that HLA-A*0201 melanoma patients can frequently develop a CTL response to the cancer testis antigen NY-ESO-1. In the present study, we have analyzed in detail the relative antigenicity and in vitro immunogenicity of natural and modified NY-ESO-1 peptide sequences. The results of this analysis revealed that, although suboptimal for binding to the HLA-A*0201 molecule, peptide NY-ESO-1 157-165 is, among natural sequences, very efficiently recognized by specific CTL clones derived from three melanoma patients. In contrast, peptides NY-ESO-1 157-167 and NY-ESO-1 155-163, which bind very strongly to HLA-A*0201, are recognized less efficiently. In agreement with previous data, substitution of peptide NY-ESO-1 157-165 COOH-terminal C with various other amino acids resulted in a significantly increased binding to HLA-A*0201 molecules as well as in an increased CTL recognition, although variable at the clonal level. Among natural peptides, NY-ESO-1 157-165 and NY-ESO-1 157-167 exhibited good in vitro immunogenicity, whereas peptide NY-ESO-1 155-163 was poorly immunogenic. The fine specificity of interaction between peptide NY-ESO-1 C165A, HLA-A*0201, and T-cell receptor was analyzed at the molecular level using a series of variant peptides containing single alanine substitutions. The findings reported here have significant implications for the formulation of NY-ESO-1-based vaccines as well as for the monitoring of either natural or vaccine-induced NY-ESO-1-specific CTL responses in cancer patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human Chagas' disease, caused by the protozoan Trypanosoma cruzi, is associated with pathological processes whose mechanisms are not known. To address this question, T cell lines were developed from chronic chagasic patients peripheral blood mononuclear cells (PBMC) and cloned. These T cell clones (TCC) were analyzed phenotypically with monoclonal antibodies by the use of a fluorescence microscope. The surface phenotype of the TCC from the asymptomatic patient were predominantly CD4 positive (86%). On the contrary, the surface phenotype CD8 was predominant in the TCC from the patients suffering from cardiomegaly with right bundle branch block (83%), bradycardia with megacolon (75 %) and bradycardia (75%). Future studies will be developed in order to identify the antigens eliciting these T cell subpopulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural killer T (NKT) cells are a subset of mature alpha beta TCR(+) cells that co-express NK lineage markers. Whereas most NKT cells express a canonical Valpha14/Vbeta8.2 TCR and are selected by CD1d, a minority of NKT cells express a diverse TCR repertoire and develop independently of CD1d. Little is known about the selection requirements of CD1d-independent NKT cells. We show here that NKT cells develop in RAG-deficient mice expressing an MHC class II-restricted transgenic TCR (Valpha2/Vbeta8.1) but only under conditions that lead to negative selection of conventional T cells. Moreover development of NKT cells in these mice is absolutely dependent upon an intact TCR alpha-chain connecting peptide domain, which is required for positive selection of conventional T cells via recruitment of the ERK signaling pathway. Collectively our data demonstrate that NKT cells can develop as a result of high avidity TCR/MHC class II interactions and suggest that common signaling pathways are involved in the positive selection of CD1d-independent NKT cells and conventional T cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The association of trans-acting T cell factors (TCFs) or lymphoid enhancer factor 1 (LEF-1) with their coactivator beta-catenin mediates transient transcriptional responses to extracellular Wnt signals. We show here that T cell maturation depends on the presence of the beta-catenin--binding domain in TCF-1. This domain is necessary to mediate the survival of immature CD4(+)CD8(+) double-positive (DP) thymocytes. Accelerated spontaneous thymocyte death in the absence of TCF-1 correlates with aberrantly low expression of the anti-apoptotic protein Bcl-x(L). Increasing anti-apoptotic effectors in thymocytes by the use of a Bcl-2 transgene rescued TCF-1-deficient DP thymocytes from apoptosis. Thus, TCF-1, upon association with beta-catenin, transiently ensures the survival of immature T cells, which enables them to generate and edit T cell receptor (TCR) alpha chains and attempt TCR-mediated positive selection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mammalian gastrointestinal (GI) tract harbors a diverse population of commensal species collectively known as the microbiota, which interact continuously with the host. From very early in life, secretory IgA (SIgA) is found in association with intestinal bacteria. It is considered that this helps to ensure self-limiting growth of the microbiota and hence participates in symbiosis. However, the importance of this association in contributing to the mechanisms ensuring natural host-microorganism communication is in need of further investigation. In the present work, we examined the possible role of SIgA in the transport of commensal bacteria across the GI epithelium. Using an intestinal loop mouse model and fluorescently labeled bacteria, we found that entry of commensal bacteria in Peyer's patches (PP) via the M cell pathway was mediated by their association with SIgA. Preassociation of bacteria with nonspecific SIgA increased their dynamics of entry and restored the reduced transport observed in germ-free mice known to have a marked reduction in intestinal SIgA production. Selective SIgA-mediated targeting of bacteria is restricted to the tolerogenic CD11c(+)CD11b(+)CD8(-) dendritic cell subset located in the subepithelial dome region of PPs, confirming that the host is not ignorant of its resident commensals. In conclusion, our work supports the concept that SIgA-mediated monitoring of commensal bacteria targeting dendritic cells in the subepithelial dome region of PPs represents a mechanism whereby the host mucosal immune system controls the continuous dialogue between the host and commensal bacteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To study the role of CD8 beta in T cell function, we derived a CD8 alpha/beta-(CD8-/-) T cell hybridoma of the H-2Kd-restricted N9 cytotoxic T lymphocyte clone specific for a photoreactive derivative of the Plasmodium berghei circumsporozoite peptide PbCS 252-260. This hybridoma was transfected either with CD8 alpha alone or together with CD8 beta. All three hybridomas released interleukin 2 upon incubation with L cells expressing Kd-peptide derivative complexes, though CD8 alpha/beta cells did so more efficiently than CD8 alpha/alpha and especially CD8-/- cells. More strikingly, only CD8 alpha/beta cells were able to recognize a weak agonist peptide derivative variant. This recognition was abolished by Fab' fragments of the anti-Kd alpha 3 monoclonal antibody SF1-1.1.1 or substitution of Kd D-227 with K, both conditions known to impair CD8 coreceptor function. T cell receptor (TCR) photoaffinity labeling indicated that TCR-ligand binding on CD8 alpha/beta cells was approximately 5- and 20-fold more avid than on CD8 alpha/a and CD8-/- cells, respectively. SF1-1.1.1 Fab' or Kd mutation D227K reduced the TCR photoaffinity labeling on CD8 alpha/beta cells to approximately the same low levels observed on CD8-/- cells. These results indicate that CD8 alpha/beta is a more efficient coreceptor than CD8alpha/alpha, because it more avidly strengthens TCR-ligand binding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expression of human leucocyte antigen (HLA) Class I molecules is essential for the recognition of malignant melanoma (MM) cells by CD8(+) T lymphocytes. A complete or partial loss of HLA Class I molecules is a potent strategy for MM cells to escape from immunosurveillance. In 2 out of 55 melanoma cell cultures we identified a complete phenotypic loss of HLA allospecificities. Both patients have been treated unsuccessfully with HLA-A2 peptides. To identify the reasons underlying the loss of single HLA-A allospecificities, we searched for genomic alterations at the locus for HLA Class I alpha-chain on chromosome 6 in melanoma cell cultures established from 2 selected patients with MM in advanced stage. This deficiency was associated with alterations of HLA-A2 gene sequences as determined by polymerase chain reaction-sequence specific primers (PCR-SSP). Karyotyping revealed a chromosomal loss in Patient 1, whereas melanoma cell cultures established from Patient 2 displayed 2 copies of chromosome 6. Loss of heterozygosity (LOH) using markers located around position 6p21 was detected in both cases. By applying group-specific primer-mixes spanning the 5'-flanking region of the HLA-A2 gene locus the relevant region was amplified by PCR and subsequent sequencing allowed alignment with the known HLA Class I reference sequences. Functional assays using HLA-A2-restricted cytotoxic T-cell clones were performed in HLA-A2 deficient MM cultures and revealed a drastically reduced susceptibility to CTL lysis in HLA-A2 negative cells. We could document the occurrence of selective HLA-A2 deficiencies in cultured advanced-stage melanoma metastases and identify their molecular causes as genomic alterations within the HLA-A gene locus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies in our laboratory have shown that DBA/2 mice injected i.p. with syngeneic P815 tumor cells transfected with the HLA-CW3 gene (P815-CW3) showed a dramatic expansion of activated CD8+CD62L- T cells expressing exclusively the Vbeta10 segment. We have used this model to study the regulatory mechanisms involved in the development of the CW3-specific CD8+ response, with respect to different routes of immunization. Whereas both intradermal (i.d.) and i.p. immunization of DBA/2 mice with P815-CW3 cells led to a strong expansion of CD8+CD62L-Vbeta10+ cells, only the i.d. route allowed this expansion after immunization with P815 cells transfected with a minigene coding for the antigenic epitope CW3 170-179 (P815 miniCW3). Furthermore, depletion of CD4+ T cells in vivo completely abolished the specific response of CD8+CD62L-Vbeta10+ cells and prevented the rejection of P815-CW3 tumor cells injected i.p., whereas it did not affect CD8S+CD62L-Vbeta10+ cell expansion after i.d. immunization with either P815-CW3 or P815 miniCW3. Finally, the CW3-specific CD8+ memory response was identical whether or not CD4+ T cells were depleted during the primary response. Collectively, these results suggest that the CD8+ T cell response to P815-CW3 tumor cells injected i.p. is strictly dependent upon recognition of a helper epitope by CD4+ T cells, whereas no such requirement is observed for i.d. injection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate the role of the coreceptor CD8 and lipid rafts in cytotoxic T lymphocyte (CTL) activation, we used soluble mono-and multimeric H-2Kd-peptide complexes and cloned S14 CTL specific for a photoreactive derivative of the Plasmodium berghei circumsporozoite (PbCS) peptide 252-260 [PbCS(ABA)]. We report that activation of CTL in suspension requires multimeric Kd-PbCS(ABA) complexes co-engaging TCR and CD8. Using TCR ligand photo-cross-linking, we find that monomeric Kd-PbCS(ABA) complexes promote association of TCR/CD3 with CD8/p56lck. Dimerization of these adducts results in activation of p56lck in lipid rafts, where phosphatases are excluded. Additional cross-linking further increases p56lck kinase activity, induces translocation of TCR/CD3 and other signaling molecules to lipid rafts and intracellular calcium mobilization. These events are prevented by blocking Src kinases or CD8 binding to TCR-associated Kd molecules, indicating that CTL activation is initiated by cross-linking of CD8-associated p56lck. They are also inhibited by methyl-beta-cyclodextrin, which disrupts rafts and by dipalmitoyl phosphatidylethanolamine, which interferes with TCR signaling. Because efficient association of CD8 and p56lck takes place in rafts, both reagents, though in different ways, impair coupling of p56lck to TCR, thereby inhibiting the initial and essential activation of p56lck induced by cross-linking of engaged TCR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whereas most T cells arise in the thymus, a distinct lineage of extrathymically derived T cells is present in the gut mucosa. The developmental origin of extrathymic T cells is poorly understood. We show here that Notch-1, a transmembrane receptor involved in T cell fate specification of bipotential T/B precursors in the thymus, is absolutely required for the development of extrathymic (as well as thymus-derived) mature T cells in the intestinal epithelium. In the absence of Notch-1, CD117(+) T cell precursors are relatively more abundant in the gut than the thymus, whereas immature B cells accumulate in the thymus but not the gut. Collectively, these data demonstrate that Notch-1 is essential for both thymic and extrathymic T cell fate specification and further suggest that bipotential T/B precursors that do not receive a Notch-1 signal adopt a B cell fate in the thymus but become developmentally arrested in the gut.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ulcerative colitis, an inflammatory bowel disease, is believed to result from a breakdown of dominant tolerance mechanisms that normally control intestinal immunity. Although CD4+ T lymphocyte subpopulations and expression of MHC class II molecules have been shown to play a role in the pathogenesis of the disease, the nature of the responsible mechanisms remains unclear. In this paper we describe a novel mouse model for inflammatory bowel disease, radiation-induced colitis, that occurs with complete penetrance 6-8 wk postinduction. A combination of high dose gamma-irradiation and lack of MHC class II expression on cells of hemopoietic origin results in development of colitis in C57BL/6 mice. Because of its versatility (due to susceptibility of mice of the widely genetically manipulated C57BL/6 background), high reproducibility, and 100% penetrance, radiation-induced colitis will be a useful mouse model for colitis and a significant tool to study dominant immunological tolerance mechanisms. Moreover, our data imply that tolerization to enteric Ags requires MHC class II mediated presentation by APC of hemopoietic origin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Ipilimumab is a monoclonal antibody that blocks the immune-inhibitory interaction between CTL antigen 4 (CTLA-4) and its ligands on T cells. Clinical trials in cancer patients with ipilimumab have shown promising antitumor activity, particularly in patients with advanced melanoma. Often, tumor regressions in these patients are correlated with immune-related side effects such as dermatitis, enterocolitis, and hypophysitis. Although these reactions are believed to be immune-mediated, the antigenic targets for the cellular or humoral immune response are not known. EXPERIMENTAL DESIGN: We enrolled patients with advanced melanoma in a phase II study with ipilimumab. One of these patients experienced a complete remission of his tumor. The specificity and functional properties of CD8-positive T cells in his peripheral blood, in regressing tumor tissue, and at the site of an immune-mediated skin rash were investigated. RESULTS: Regressing tumor tissue was infiltrated with CD8-positive T cells, a high proportion of which were specific for Melan-A. The skin rash was similarly infiltrated with Melan-A-specific CD8-positive T cells, and a dramatic (>30-fold) increase in Melan-A-specific CD8-positive T cells was apparent in peripheral blood. These cells had an effector phenotype and lysed Melan-A-expressing tumor cells. CONCLUSIONS: Our results show that Melan-A may be a major target for both the autoimmune and antitumor reactions in patients treated with anti-CTLA-4, and describe for the first time the antigen specificity of CD8-positive T cells that mediate tumor rejection in a patient undergoing treatment with an anti-CTLA-4 antibody. These findings may allow a better integration of ipilimumab into other forms of immunotherapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CD1d-dependent invariant Valpha14 (Valpha14i) NKT cells are innate T lymphocytes expressing a conserved semi-invariant TCR, consisting, in mice, of the invariant Valpha14-Jalpha18 TCR alpha-chain paired mostly with Vbeta8.2 and Vbeta7. The cellular requirements for thymic positive and negative selection of Valpha14i NKT cells are only partially understood. Therefore, we generated transgenic mice expressing human CD1d (hCD1d) either on thymocytes, mainly CD4+ CD8+ double positive, or on APCs, the cells implicated in the selection of Valpha14i NKT cells. In the absence of the endogenous mouse CD1d (mCD1d), the expression of hCD1d on thymocytes, but not on APCs, was sufficient to select Valpha14i NKT cells that proved functional when activated ex vivo with the Ag alpha-galactosyl ceramide. Valpha14i NKT cells selected by hCD1d on thymocytes, however, attained lower numbers than in control mice and expressed essentially Vbeta8.2. The low number of Vbeta8.2+ Valpha14i NKT cells selected by hCD1d on thymocytes was not reversed by the concomitant expression of mCD1d, which, instead, restored the development of Vbeta7+ Valpha14i NKT cells. Vbeta8.2+, but not Vbeta7+, NKT cell development was impaired in mice expressing both hCD1d on APCs and mCD1d. Taken together, our data reveal that selective CD1d expression by thymocytes is sufficient for positive selection of functional Valpha14i NKT cells and that both thymocytes and APCs may independently mediate negative selection.