867 resultados para Catchment Runoff


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interest in attributing the risk of damaging weather-related events to anthropogenic climate change is increasing1. Yet climate models used to study the attribution problem typically do not resolve the weather systems associated with damaging events2 such as the UK floods of October and November 2000. Occurring during the wettest autumn in England and Wales since records began in 17663, 4, these floods damaged nearly 10,000 properties across that region, disrupted services severely, and caused insured losses estimated at £1.3 billion (refs 5, 6). Although the flooding was deemed a ‘wake-up call’ to the impacts of climate change at the time7, such claims are typically supported only by general thermodynamic arguments that suggest increased extreme precipitation under global warming, but fail8, 9 to account fully for the complex hydrometeorology4, 10 associated with flooding. Here we present a multi-step, physically based ‘probabilistic event attribution’ framework showing that it is very likely that global anthropogenic greenhouse gas emissions substantially increased the risk of flood occurrence in England and Wales in autumn 2000. Using publicly volunteered distributed computing11, 12, we generate several thousand seasonal-forecast-resolution climate model simulations of autumn 2000 weather, both under realistic conditions, and under conditions as they might have been had these greenhouse gas emissions and the resulting large-scale warming never occurred. Results are fed into a precipitation-runoff model that is used to simulate severe daily river runoff events in England and Wales (proxy indicators of flood events). The precise magnitude of the anthropogenic contribution remains uncertain, but in nine out of ten cases our model results indicate that twentieth-century anthropogenic greenhouse gas emissions increased the risk of floods occurring in England and Wales in autumn 2000 by more than 20%, and in two out of three cases by more than 90%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Nutrient concentrations (particularly N and P) determine the extent to which water bodies are or may become eutrophic. Direct determination of nutrient content on a wide scale is labour intensive but the main sources of N and P are well known. This paper describes and tests an export coefficient model for prediction of total N and total P from: (i) land use, stock headage and human population; (ii) the export rates of N and P from these sources; and (iii) the river discharge. Such a model might be used to forecast the effects of changes in land use in the future and to hindcast past water quality to establish comparative or baseline states for the monitoring of change. 2. The model has been calibrated against observed data for 1988 and validated against sets of observed data for a sequence of earlier years in ten British catchments varying from uplands through rolling, fertile lowlands to the flat topography of East Anglia. 3. The model predicted total N and total P concentrations with high precision (95% of the variance in observed data explained). It has been used in two forms: the first on a specific catchment basis; the second for a larger natural region which contains the catchment with the assumption that all catchments within that region will be similar. Both models gave similar results with little loss of precision in the latter case. This implies that it will be possible to describe the overall pattern of nutrient export in the UK with only a fraction of the effort needed to carry out the calculations for each individual water body. 4. Comparison between land use, stock headage, population numbers and nutrient export for the ten catchments in the pre-war year of 1931, and for 1970 and 1988 show that there has been a substantial loss of rough grazing to fertilized temporary and permanent grasslands, an increase in the hectarage devoted to arable, consistent increases in the stocking of cattle and sheep and a marked movement of humans to these rural catchments. 5. All of these trends have increased the flows of nutrients with more than a doubling of both total N and total P loads during the period. On average in these rural catchments, stock wastes have been the greatest contributors to both N and P exports, with cultivation the next most important source of N and people of P. Ratios of N to P were high in 1931 and remain little changed so that, in these catchments, phosphorus continues to be the nutrient most likely to control algal crops in standing waters supplied by the rivers studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A weekly programme of water quality monitoring has been conducted by Slapton Ley Field Centre since 1970. Samples have been collected for the four main streams draining into Slapton Ley, from the Ley itself and from other sites within the catchment. On occasions, more frequent sampling has been undertaken during short-term research projects, usually in relation to nutrient export from the catchment. These water quality data, unparalleled in length for a series of small drainage basins in the British Isles, provide a unique resource for analysis of spatial and temporal variations in stream water quality within an agricultural area. Not surprisingly, given the eutrophic status of the Ley, most attention has focused on the nutrients nitrate and phosphate. A number of approaches to modelling nutrient loss have been attempted, including time series analysis and the application of nutrient export and physically-based models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Slapton Ley, a freshwater lake, located in south Devon (National Grid Reference SX 825 439), has been the focus of a wide range of research studies since the foundation of the Field Studies Council Centre in Slapton village in 1959, and the creation of the Slapton Ley Nature Reserve. Early concerns over eutrophication of the Lower Ley led to a range of studies focused on the impacts of land use change in the catchment, on nutrient delivery to the Ley, and on interpreting the impact of long-term nutrient enrichment of the Ley from palaeolimnological studies. What has been missing to date, however, is a focused study of the impacts of nutrient enrichment on the chemical and ecological structure and function of the combined Lower and Higher Ley systems. This paper attempts to draw together the various areas of study on the Ley to date in order to provide a review of current understanding of the limnology of Slapton Ley and to identify gaps in our knowledge. The past, present and future trophic status of the Ley is re-interpreted in the light of current understanding of the eutrophication process in the wider scientific community. Recommendations for future research are then made, with a view to the monitoring and management of Slapton Ley and its catchment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Export coefficient modelling was used to model the impact of agriculture on nitrogen and phosphorus loading on the surface waters of two contrasting agricultural catchments. The model was originally developed for the Windrush catchment where the highly reactive Jurassic limestone aquifer underlying the catchment is well connected to the surface drainage network, allowing the system to be modelled using uniform export coefficients for each nutrient source in the catchment, regardless of proximity to the surface drainage network. In the Slapton catchment, the hydrological path-ways are dominated by surface and lateral shallow subsurface flow, requiring modification of the export coefficient model to incorporate a distance-decay component in the export coefficients. The modified model was calibrated against observed total nitrogen and total phosphorus loads delivered to Slapton Ley from inflowing streams in its catchment. Sensitivity analysis was conducted to isolate the key controls on nutrient export in the modified model. The model was validated against long-term records of water quality, and was found to be accurate in its predictions and sensitive to both temporal and spatial changes in agricultural practice in the catchment. The model was then used to forecast the potential reduction in nutrient loading on Slapton Ley associated with a range of catchment management strategies. The best practicable environmental option (BPEO) was found to be spatial redistribution of high nutrient export risk sources to areas of the catchment with the greatest intrinsic nutrient retention capacity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Until recently, pollution control in rural drainage basins of the UK consisted solely of water treatment at the point of abstraction. However, prevention of agricultural pollution at source is now a realistic option given the possibility of financing the necessary changes in land use through modification of the Common Agricultural Policy. This paper uses a nutrient export coefficient model to examine the cost of land-use change in relation to improvement of water quality. Catchment-wide schemes and local protection measures are considered. Modelling results underline the need for integrated management of entire drainage basins. A wide range of benefits may accrue from land-use change, including enhanced habitats for wildlife as well as better drinking water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regional to global scale modelling of N flux from land to ocean has progressed to date through the development of simple empirical models representing bulk N flux rates from large watersheds, regions, or continents on the basis of a limited selection of model parameters. Watershed scale N flux modelling has developed a range of physically-based approaches ranging from models where N flux rates are predicted through a physical representation of the processes involved, through to catchment scale models which provide a simplified representation of true systems behaviour. Generally, these watershed scale models describe within their structure the dominant process controls on N flux at the catchment or watershed scale, and take into account variations in the extent to which these processes control N flux rates as a function of landscape sensitivity to N cycling and export. This paper addresses the nature of the errors and uncertainties inherent in existing regional to global scale models, and the nature of error propagation associated with upscaling from small catchment to regional scale through a suite of spatial aggregation and conceptual lumping experiments conducted on a validated watershed scale model, the export coefficient model. Results from the analysis support the findings of other researchers developing macroscale models in allied research fields. Conclusions from the study confirm that reliable and accurate regional scale N flux modelling needs to take account of the heterogeneity of landscapes and the impact that this has on N cycling processes within homogenous landscape units.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A manageable, relatively inexpensive model was constructed to predict the loss of nitrogen and phosphorus from a complex catchment to its drainage system. The model used an export coefficient approach, calculating the total nitrogen (N) and total phosphorus (P) load delivered annually to a water body as the sum of the individual loads exported from each nutrient source in its catchment. The export coefficient modelling approach permits scaling up from plot-scale experiments to the catchment scale, allowing application of findings from field experimental studies at a suitable scale for catchment management. The catchment of the River Windrush, a tributary of the River Thames, UK, was selected as the initial study site. The Windrush model predicted nitrogen and phosphorus loading within 2% of observed total nitrogen load and 0.5% of observed total phosphorus load in 1989. The export coefficient modelling approach was then validated by application in a second research basin, the catchment of Slapton Ley, south Devon, which has markedly different catchment hydrology and land use. The Slapton model was calibrated within 2% of observed total nitrogen load and 2.5% of observed total phosphorus load in 1986. Both models proved sensitive to the impact of temporal changes in land use and management on water quality in both catchments, and were therefore used to evaluate the potential impact of proposed pollution control strategies on the nutrient loading delivered to the River Windrush and Slapton Ley

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A great deal of work recently has focused on suspended and bedload sediment transport, driven primarily by interest in contaminant transfer. However, uncertainties regarding the role of storm events, macrophyte beds and interactions between the two phases of sediment still exist. This paper compares two study sites within the same catchment whose geology varies significantly. The differences in hydrology, suspended sediment (SS) transport and bed load transport that this causes are examined. In addition, a method to predict the mobilization of different size fractions of sediment during given flows is investigated using critical entrainment thresholds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The contribution non-point P sources make to the total P loading on water bodies in agricultural catchments has not been fully appreciated. Using data derived from plot scale experimental studies, and modelling approaches developed to simulate system behaviour under differing management scenarios, a fuller understanding of the processes controlling P export and transformations along non-point transport pathways can be achieved. One modelling approach which has been successfully applied to large UK catchments (50-350km2 in area) is applied here to a small, 1.5 km2 experimental catchment. The importance of scaling is discussed in the context of how such approaches can extrapolate the results from plot-scale experimental studies to full catchment scale. However, the scope of such models is limited, since they do not at present directly simulate the processes controlling P transport and transformation dynamics. As such, they can only simulate total P export on an annual basis, and are not capable of prediction over shorter time scales. The need for development of process-based models to help answer these questions, and for more comprehensive UK experimental studies is highlighted as a pre-requisite for the development of suitable and sustainable management strategies to reduce non-point P loading on water bodies in agricultural catchments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some of the techniques used to model nitrogen (N) and phosphorus (P) discharges from a terrestrial catchment to an estuary are discussed and applied to the River Tamar and Tamar Estuary system in Southwest England, U.K. Data are presented for dissolved inorganic nutrient concentrations in the Tamar Estuary and compared with those from the contrasting, low turbidity and rapidly flushed Tweed Estuary in Northeast England. In the Tamar catchment, simulations showed that effluent nitrate loads for typical freshwater flows contributed less than 1% of the total N load. The effect of effluent inputs on ammonium loads was more significant (∼10%). Cattle, sheep and permanent grassland dominated the N catchment export, with diffuse-source N export greatly dominating that due to point sources. Cattle, sheep, permanent grassland and cereal crops generated the greatest rates of diffuse-source P export. This reflected the higher rates of P fertiliser applications to arable land and the susceptibility of bare, arable land to P export in wetter winter months. N and P export to the Tamar Estuary from human sewage was insignificant. Non-conservative behaviour of phosphate was particularly marked in the Tamar Estuary. Silicate concentrations were slightly less than conservative levels, whereas nitrate was essentially conservative. The coastal sea acted as a sink for these terrestrially derived nutrients. A pronounced sag in dissolved oxygen that was associated with strong nitrite and ammonium peaks occurred in the turbidity maximum region of the Tamar Estuary. Nutrient behaviour within the Tweed was very different. The low turbidity and rapid flushing ensured that nutrients there were essentially conservative, so that flushing of nutrients to the coastal zone from the river occurred with little estuarine modification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evidence provided by modelled assessments of future climate impact on flooding is fundamental to water resources and flood risk decision making. Impact models usually rely on climate projections from global and regional climate models (GCM/RCMs). However, challenges in representing precipitation events at catchment-scale resolution mean that decisions must be made on how to appropriately pre-process the meteorological variables from GCM/RCMs. Here the impacts on projected high flows of differing ensemble approaches and application of Model Output Statistics to RCM precipitation are evaluated while assessing climate change impact on flood hazard in the Upper Severn catchment in the UK. Various ensemble projections are used together with the HBV hydrological model with direct forcing and also compared to a response surface technique. We consider an ensemble of single-model RCM projections from the current UK Climate Projections (UKCP09); multi-model ensemble RCM projections from the European Union's FP6 ‘ENSEMBLES’ project; and a joint probability distribution of precipitation and temperature from a GCM-based perturbed physics ensemble. The ensemble distribution of results show that flood hazard in the Upper Severn is likely to increase compared to present conditions, but the study highlights the differences between the results from different ensemble methods and the strong assumptions made in using Model Output Statistics to produce the estimates of future river discharge. The results underline the challenges in using the current generation of RCMs for local climate impact studies on flooding. Copyright © 2012 Royal Meteorological Society

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper critically examines the impact of the ‘Guidelines for Hariyali’ – a rural watershed development policy launched in Rajasthan, Western India which has been implemented through a Public Private Partnership (PPP) – for local communities. In 2003, the Government of India launched the ‘Guidelines’ (a comprehensive Integrated Wastelands Development Programme and Drought Prone Areas Programme and Desert Development Programme), the purpose of which is to restore ecological balance by harnessing, conserving and developing natural resources in drought-prone and arid rural areas for the benefit of villages. In the particular case-study area, the policy has been implemented through institutional linkages between a corporation and the government with the aim of sharing responsibilities for finances, planning, implementation and monitoring, the end goal being to enhance the livelihoods of rural households. The analysis focuses specifically on how the ‘Guidelines’ have affected the livelihoods of Rajasthani women, drawing upon findings from focus groups with men and women in the project catchment area, as well as interviews with key actors at public and private sector institutions. Findings reveal that there are significant gaps between policy objectives and the realities on the ground, particularly in the context of women's accessibilities and entitlements. The paper also broadens understanding of how PPPs, if implemented properly, could empower women in the area of watershed management across rural South Asia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global flood hazard maps can be used in the assessment of flood risk in a number of different applications, including (re)insurance and large scale flood preparedness. Such global hazard maps can be generated using large scale physically based models of rainfall-runoff and river routing, when used in conjunction with a number of post-processing methods. In this study, the European Centre for Medium Range Weather Forecasts (ECMWF) land surface model is coupled to ERA-Interim reanalysis meteorological forcing data, and resultant runoff is passed to a river routing algorithm which simulates floodplains and flood flow across the global land area. The global hazard map is based on a 30 yr (1979–2010) simulation period. A Gumbel distribution is fitted to the annual maxima flows to derive a number of flood return periods. The return periods are calculated initially for a 25×25 km grid, which is then reprojected onto a 1×1 km grid to derive maps of higher resolution and estimate flooded fractional area for the individual 25×25 km cells. Several global and regional maps of flood return periods ranging from 2 to 500 yr are presented. The results compare reasonably to a benchmark data set of global flood hazard. The developed methodology can be applied to other datasets on a global or regional scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract This study presents a model intercomparison of four regional climate models (RCMs) and one variable resolution atmospheric general circulation model (AGCM) applied over Europe with special focus on the hydrological cycle and the surface energy budget. The models simulated the 15 years from 1979 to 1993 by using quasi-observed boundary conditions derived from ECMWF re-analyses (ERA). The model intercomparison focuses on two large atchments representing two different climate conditions covering two areas of major research interest within Europe. The first is the Danube catchment which represents a continental climate dominated by advection from the surrounding land areas. It is used to analyse the common model error of a too dry and too warm simulation of the summertime climate of southeastern Europe. This summer warming and drying problem is seen in many RCMs, and to a less extent in GCMs. The second area is the Baltic Sea catchment which represents maritime climate dominated by advection from the ocean and from the Baltic Sea. This catchment is a research area of many studies within Europe and also covered by the BALTEX program. The observed data used are monthly mean surface air temperature, precipitation and river discharge. For all models, these are used to estimate mean monthly biases of all components of the hydrological cycle over land. In addition, the mean monthly deviations of the surface energy fluxes from ERA data are computed. Atmospheric moisture fluxes from ERA are compared with those of one model to provide an independent estimate of the convergence bias derived from the observed data. These help to add weight to some of the inferred estimates and explain some of the discrepancies between them. An evaluation of these biases and deviations suggests possible sources of error in each of the models. For the Danube catchment, systematic errors in the dynamics cause the prominent summer drying problem for three of the RCMs, while for the fourth RCM this is related to deficiencies in the land surface parametrization. The AGCM does not show this drying problem. For the Baltic Sea catchment, all models similarily overestimate the precipitation throughout the year except during the summer. This model deficit is probably caused by the internal model parametrizations, such as the large-scale condensation and the convection schemes.