963 resultados para Catalytic-activity


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The combination of dwindling oil reserves and growing concerns over carbon dioxide emissions and associated climate change is driving the urgent development of clean, sustainable energy supplies. Biodiesel is a non-toxic and biodegradable fuel, with the potential for closed CO2 cycles and thus vastly reduced carbon footprints compared with petroleum. However, current manufacturing routes employing soluble catalysts are very energy inefficient, with their removal necessitating an energy intensive separation to purify biodiesel, which in turn produces copious amounts of contaminated aqueous waste. The introduction of non-food based feedstocks and technical advances in heterogeneous catalyst and reactor design are required to ensure that biodiesel remains a key player in the renewable energy sector for the 21st century. Here we report on the development of tuneable solid acid and bases for biodiesel synthesis, which offer several process advantages by eliminating the quenching step and allowing operation in a continuous reactor. Significant progress has been made towards developing tuneable solid base catalysts for biodiesel synthesis, including Li/CaO [1], Mg-Al hydrotalcites [2] and calcined dolomite [3] which exhibit excellent activity for triglyceride transesterification. However, the effects of solid base strength on catalytic activity in biodiesel synthesis remains poorly understood, hampering material optimisation and commercial exploitation. To improve our understanding of factors influencing solid base catalysts for biodiesel synthesis, we have applied a simple spectroscopic method for the quantitative determination of surface basicity which is independent of adsorption probes. Such measurements reveal how the morphology and basicity of MgO nanocrystals correlate with their biodiesel synthesis activity [4]. While diverse solid acids and bases have been investigated for TAG transesterification, the micro and mesoporous nature of catalyst systems investigated to date are not optimal for the diffusion of bulky and viscous C16-C18 TAGs typical of plant oils. The final part of this presentation will address the benefits of designing porous networks comprising interconnected hierarchical macroporous and mesoporous channels (Figure 1) to enhance mass-transport properties of viscous plant oils during biodiesel synthesis [5]. References: [1] R.S. Watkins, A.F. Lee, K. Wilson, Green Chem., 2004, 6, 335. [2]D.G. Cantrell, L.J. Gillie, A.F. Lee and K. Wilson, Appl. Catal. A, 2005, 287,183. [3] C. Hardacre, A.F. Lee, J.M. Montero, L. Shellard, K.Wilson, Green Chem., 2008, 10, 654. [4] J.M. Montero, P.L. Gai, K. Wilson, A.F. Lee, Green Chem., 2009, 11, 265. [5] J. Dhainaut, J.-P. Dacquin, A.F. Lee, K. Wilson, Green Chem., 2010, 12, 296.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A continuous multi-step synthesis of 1,2-diphenylethane was performed sequentially in a structured compact reactor. This process involved a Heck C-C coupling reaction followed by the addition of hydrogen to perform reduction of the intermediate obtained in the first step. Both of the reactions were catalysed by microspherical carbon-supported Pd catalysts. Due to the integration of the micro-heat exchanger, the static mixer and the mesoscale packed-bed reaction channel, the compact reactor was proven to be an intensified tool for promoting the reactions. In comparison with the batch reactor, this flow process in the compact reactor was more efficient as: (i) the reaction time was significantly reduced (ca. 7 min versus several hours), (ii) no additional ligands were used and (iii) the reaction was run at lower operational pressure and temperature. Pd leached in the Heck reaction step was shown to be effectively recovered in the following hydrogenation reaction section and the catalytic activity of the system can be mostly retained by reverse flow operation. © 2009 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pd(II) and Pd(0) catalysts supported onto titanate nanotubes (H2Ti3O7) were prepared by an ion-exchange technique. The catalysts are characterised by narrow size distribution of metal nanoparticles on the external surface of the nanotubes. Pd(II) catalysts show high selectivity toward double-bond migration reaction versus hydrogenation in linear olefins. The catalytic activity exhibits a volcano-type dependence on the metal loading, with the maximum activity observed at ca. 8 wt%. The Pd(II) was shown to be rapidly reduced to Pd(0) by appropriate choice of solvent. Prereduced Pd(0) catalysts were found to be less active toward double-bond migration and more selective toward hydrogenation. The DBM reaction was faster in protic solvents, such as methanol or ethanol. © 2006 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Copper(II) acetylacetonate was anchored onto a hexagonal mesoporous silica (HMS) material using a two-step procedure: (i) functionalisation of the surface hydroxy groups with (3-aminopropyl)triethoxysilane (AMPTSi) and then (ii) anchoring of the copper(II) complex through Schiff condensation with free amine groups, using two different metal complex loadings. Upon the first step, nitrogen elemental analysis, XPS and DRIFT showed the presence of amine groups on the surface of the HMS material, and porosimetry indicated that the structure of the mesoporous material remained unchanged, although a slight decrease in surface area was observed. Atomic absorption, XPS and DRIFT showed that copper(II) acetylacetonate was anchored onto the amine-functionalised HMS by Schiff condensation between the free amine groups and the carbonyl groups of the copper(II) complex; using EPR an NO3 coordination sphere was proposed for the anchored copper(II) complex. The new [Cu(acac)2]-AMPTSi/HMS materials were tested in the aziridination of styrene at room temperature, using PhI=NTs as nitrogen source and acetonitrile as solvent. The styrene conversion and total TON of the heterogeneous phase reaction are higher than those of the same reaction catalysed in homogeneous phase by [Cu(acac)2]; nevertheless, the initial activity decreases and the reaction time increases due to substrate and product diffusion limitations. The heterogeneous catalyst showed a successive slight decrease in catalytic activity when reused for two more times. © Wiley-VCH Verlag GmbH & Co. KGaA, 2006.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two modified Jacobsen-type catalysts were anchored onto an amine functionalised hexagonal mesoporous silica (HMS) using two distinct anchoring procedures: (i) one was anchored directly through the carboxylic acid functionalised diimine bridge fragment of the complex (CAT1) and (ii) the other through the hydroxyl group on the aldehyde fragment of the complex (CAT2), mediated by cyanuric chloride. The new heterogeneous catalyst, as well as the precedent materials, were characterised by elemental analyses, DRIFT, UV-vis, porosimetry and XPS which showed that the complexes were successfully anchored onto the hexagonal mesoporous silica. These materials acted as active heterogeneous catalysts in the epoxidation of styrene, using m-CPBA as oxidant, and α-methylstyrene, using NaOCl as oxidant. Under the latter conditions they acted also as enantioselective heterogeneous catalysts. Furthermore, when compared to the reaction run in homogeneous phase under similar experimental conditions, an increase in asymmetric induction was observed for the heterogenised CAT1, while the opposite effect was observed for the heterogenised CAT2, despite of CAT2 being more enantioselective than CAT1 in homogeneous phase. These results indicate that the covalent attachment of the Jacobsen catalyst through the diimine bridge leads to improved enantiomeric excess (%ee), whereas covalent attachment through one of the aldehyde fragments results in a negative effect in the %ee. Using α-methylstyrene and NaOCl as oxidant, heterogeneous catalyst reuse led to no significant loss of catalytic activity and enantioselectivity. © 2005 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Jacobsen-type catalyst was anchored onto an amine functionalised hexagonal mesoporous silica (HMS) through the diimine bridge fragment of the complex. The new heterogeneous catalyst, as well as the precedent materials, were characterised by elemental analyses, FTIR-DRIFT, UV-vis, porosimetry and XPS which showed that the complex was successfully anchored. This material was active in the epoxidation of styrene and α-methylstyrene in dichloromethane at 0°C using, respectively, m-CPBA/NMO and NaOCl. With the former substrate no asymmetric induction was found in the epoxide, whereas with the latter substrate higher %ee was found than in homogeneous phase. Using the latter experimental conditions, catalyst reuse led to no significant loss of catalytic activity and enantioselectivity. © 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The structural evolution of a Pd/C catalyst during the liquid phase selective aerobic oxidation of cinnamyl alcohol has been followed by in situ XAFS and XPS. The fresh catalyst comprised highly dispersed, heavily oxidised Pd particles. Cinnamyl alcohol oxidation resulted in the rapid reduction of surface palladium oxide and a small degree of concomitant particle growth. These structural changes coincided with a large drop in catalytic activity. Prereduced Pd/C exhibited a significantly lower initial oxidation rate demonstrating the importance of surface metal oxide in effecting catalytic oxidation. Use of a Pd black model system confirmed that the oxide→metal transformation was the cause, and not result, of catalyst deactivation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Arenesulfonic-acid functionalized SBA-15 materials have been used in the production of biodiesel from low grade oleaginous feedstock. These materials display an outstanding catalytic activity, being able to promote the transformation of crude palm oil with methanol into fatty acid methyl esters with high yield (85%) under mild reaction conditions. However, high sensitivity of the catalyst against poisoning by different substances has also been detected. Thus, alkaline metal cations, such as sodium or potassium exert a negative influence on the catalytic activity of these materials, being necessary amounts around 500 ppm of sodium in the reaction media to decrease the catalytic activity of these materials to a half of its initial value in just two reaction runs. The deactivation of arenesulfonic acid functionalized SBA-15 materials seems to occur in this case by ion exchange of the acid protons at the sulfonic groups. Organic unsaponifiable compounds like lecithin or retinol also induce a negative influence in the catalytic activity of these sulfonic acid-based materials, though not so intense as in the case of alkaline metals. The deactivating mechanism associated to the influence of the organic compounds seems to be linked to the adsorption of such substances onto the catalytic acid sites as well as on the silica surface. The accumulation of lecithin in the surface of catalyst, observed by means of thermogravimetric analysis, suggest the creation of a strong interaction, probably by ion pair, between this compound and the sulfonic acid group.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Various room temperature ionic liquids (RTILs), notably, 1-methoxyethyl-3-methylimidazolium trifluoroacetate [MeOEtMIM]+[CF3COO]ˉ , have been used to promote the Knoevenagel condensation to afford substituted olefins. All reactions proceeded effectively in the absence of any other catalysts or co-solvents with good to excellent yields. This method is simple and applicable to reactions involving a wide range of aldehydes and ketones with methylene compounds. The ionic liquid can be recycled without noticeable reduction of its catalytic activity. A plausible reaction mechanism is proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since the first discovery of S100 members in 1965, their expressions have been affiliated with numerous biological functions in all cells of the body. However, in the recent years, S100A4, a member of this superfamily has emerged as the central target in generating new avenue for cancer therapy as its overexpression has been correlated with cancer patients’ mortality as well as established roles as motility and metastasis promoter. As it has no catalytic activity, S100A4 has to interact with its target proteins to regulate such effects. Up to date, more than 10 S100A4 target proteins have been identified but the mechanical process regulated by S100A4 to induce motility remains vague. In this work, we demonstrated that S100A4 overexpression resulted in actin filaments disorganisation, reduction in focal adhesions, instability of filopodia as well as exhibiting polarised morphology. However, such effects were not observed in truncated versions of S100A4 possibly highlighting the importance of C terminus of S100A4 target recognition. In order to assess some of the intracellular mechanisms that may be involved in promoting migrations, different strategies were used, including active pharmaceutical agents, inhibitors and knockdown experiments. Treatment of S100A4 overexpressing cells with blebbistatin and Y-27632, non muscle myosin IIA (NMMIIA) inhibitors, as well as knockdown of NMMIIA, resulted in motility enhancement and focal adhesions reduction proposing that NMMIIA assisted S100A4 in regulating cell motility but its presence is not essential. Further work done using Cos 7 cell lines, naturally lacking NMMIIA, further demonstrated that S100A4 is capable of regulating cell motility independent of NMMIIA, possibly through poor maturation of focal adhesion. Given that all these experiments highlighted the independency of NMMIIA towards migration, a protein that has been put at the forefront of S100A4-induced motility, we aimed to gather further understanding regarding the other molecular mechanisms that may be at play for motility. Using high throughput imaging (HCI), 3 compounds were identified to be capable of inhibiting S100A4-mediated migration. Although we have yet to investigate the underlying mechanism for their effects, these compounds have been shown to target membrane proteins and the externalisation of S100 proteins, for at least one of the compounds, leading us to speculate that preventing externalisation of S100A4 could potentially regulate cell motility.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pt catalyst series were prepared on mesoporous SBA-15, SBA-16, KIT-6, true liquidcrystal-templated meso-macroporous SBA-15 and a commercial, low surface area silicasupport. Support structure can be easily fabricated using surfactant templating as a mode ofstringent control on porosity, surface area and internal structure. The impact of varying Pt-support physicochemical properties was systematically studied for the selective transformation of allylic substrates under chemoselective oxidation and hydrogenation regimes, a class of reactions highly applicable to industry. Pt-based heterogeneous catalysts are well-known for their utilisation in the hydrogenation of α,β-unsaturated aldehydes,although the mode of action and lack of systematic studies in the literature fuels continuing debate into the role of Pt nanoparticles and support choice for this area. This project attempts to shed some light on several frequently asked questions in this field. Successful support synthesis and stability after Pt impregnation is confirmed through HRTEM, XRD and N2 porosimetry. Decreasing metal loading promoted dispersion values,regardless of support choice, with surface PtO2 content also showing visible enhancement.Increasing support surface area and mesoporosity exhibited the following trend on Pt dispersion augmentation; low surface area commercial silica < true liquid crystal-templated SBA-15 < SBA-15 < SBA-16 ~ KIT-6. For the selective oxidation of cinnamyl alcohol,increasing PtO2 surface population confers substantial rate enhancements, with turnover frequencies evidencing PtO2 to be the active species .In the Pt-catalysed hydrogenation of cinnamaldehyde, strong support insensitivity was observed towards catalytic activity; as turnover frequencies normalised to Pt metal reveal constant values. However, structure sensitivity to the desired unsaturated alcohol arose,evidencing the requirement of flat, extended Pt (111) facets for C=O hydrogenation. Pt/SBA-15 proved the most selective, reflecting suppressed cinnamyl alcohol hydrogenation, with DRIFTS and in-situ ATR-IR evidencing the key role of support polarity in re-orientation of cinnamaldehyde to favour di-σCO adsorption and C=O versus C=C hydrogenation. High pressures increased activity, whilst a dramatic shift in selectivity from dominant C=C (1 bar)to C=O hydrogenation (10 bar) was also observed, attributed to surface crowding and suppression of di-σCC and η4 di-σCO+πC=C cinnamaldehyde binding modes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As an extracellular second messenger, nitric oxide (NO) mediates the modification of proteins through nitrosylation of cysteine andtyrosine residues. Tissue Transglutaminase (TG2) is a Ca2+ activated, sulfhydryl rich protein with 18 free cysteine residues, which catalyzes ε-(γ glutamyl)lysine crosslink between extracellular and intracellular proteins. NO can nitrosylate up to 15 of the cysteine residues in TG2, leading to the irreversible inactivation of the enzyme activity. The interplay between these two agents was revealed for the first time by our study showing that NO inhibited the TG2-induced transcriptional activation of TGFb1and extracellular matrix (ECM) protein synthesis by nitrosylating TG2 in an inactive confirmation with inert catalytic activity. However, nitrosylated TG2 was still able to serve as a novel cell adhesion protein. In the light of our previous findings, in this study we aim to elucidate the NO modified function of TG2 in cell migration using an in vitro model mimicking the tissue matrix remodeling phases of wound healing. Using transfected fibroblasts expressing TG2 under the control of the tetracycline-off promoter, we demonstrate that upregulation of TG2 expression and activity inhibited the cell migration through the activation of TGFβ1. Increased TG2 activity led to arise in the biosynthesis and activity of the gelatinases, MMP-2 andMMP-9, while decreasing the biosynthesis and activity of the col-lagenases MMP-1a and MMP-13. NO donor S-Nitroso-N-acetyl-penicillamine (SNAP) treatment relieved the TG2 obstructed-cellmigration by blocking the TG2 enzyme activity. In addition,decrease in TG2 activity due to nitrosylation led to an inhibition of TGFβ1, which in turn affected the pattern of MMP activation. Recent evidence suggests that, once in complex with fibronectin in the ECM, TG2 can interact with syndecan-4 or integrinβ-1and regulate the cell adhesion. In the other part of this study, the possible role of nitrosylated TG2 on the regulation of cell migration during wound healing was investigated with respect to its interactions with integrin β1 (ITGβ1) and syndecan-4 (SDC4). Treatment with TG2 inhibitor Z-DON resulted in a 50% decrease in the TG2 interaction with ITGB1 and SDC4, while increasing concentrations of SNAP firstly led to a substantial decrease and then completely abolished the TG2/ITGβ1 and TG2/SDC4 complex formation on the cell surface. Taken together, data obtained from this study suggests that nitrosylation of TG2 leads to a change not only in the binding partners of TG2 on cell surface but also in TGFβ1-dependent MMP activation, which give rise to an increase in the migration potential of fibroblasts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mechanistically and structurally chloroperoxidase (CPO) occupies a unique niche among heme containing enzymes. Chloroperoxidase catalyzes a broad range of reactions, such as oxidation of organic substrates, dismutation of hydrogen peroxide, and mono-oxygenation of organic molecules. To expand the synthetic utility of CPO and to appreciate the important interactions that lead to CPO’s exceptional properties, a site-directed mutagenesis study was undertaken. ^ Recombinant CPO and CPO mutants were heterologously expressed in Aspergillus niger. The overall protein structure was almost the same as that of wild type CPO, as determined by UV-vis, NMR and CD spectroscopies. Phenylalanine103, which was proposed to regulate substrate access to the active site by restricting the size of substrates and to control CPO’s enantioselectivity, was mutated to Ala. The ligand binding affinity and most importantly the catalytic activity of F103A was dramatically different from wild type CPO. The mutation essentially eliminated the chlorination and dismutation activities but enhanced, 4-10 fold, the epoxidation, peroxidation, and N-demethylation activities. As expected, the F103A mutant displayed dramatically improved epoxidation activity for larger, more branched styrene derivatives. Furthermore, F103A showed a distinctive enantioselectivity profile: losing enantioselectivity to styrene and cis-β-methylstyrene; having a different configuration preference on α-methylstyrene; showing higher enantioselectivites and conversion rates on larger, more branched substrates. Our results show that F103 acts as a switch box that controls the catalytic activity, substrate specificity, and product enantioselectivity of CPO. Given that no other mutant of CPO has displayed distinct properties, the results with F103A are dramatic. ^ The diverse catalytic activity of CPO has long been attributed to the presence of the proximal thiolate ligand. Surprisingly, a recent report on a C29H mutant suggested otherwise. A new CPO triple mutant C29H/C79H/C87H was prepared, in which all the cysteines were replaced by histidine to eliminate the possibility of cysteine coordinating to the heme. No active form protein was isolated, although, successful transformation and transcription was confirmed. The result suggests that Cys79 and Cys87 are critical to maintaining the structural scaffold of CPO. ^ In vitro biodegradation of nanotubes by CPO were examined by scanning electron microscope method, but little oxidation was observed. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Synthesis and functionalization of large-area graphene and its structural, electrical and electrochemical properties has been investigated. First, the graphene films, grown by thermal chemical vapor deposition (CVD), contain three to five atomic layers of graphene, as confirmed by Raman spectroscopy and high-resolution transmission electron microscopy. Furthermore, the graphene film is treated with CF4 reactive-ion plasma to dope fluorine ions into graphene lattice as confirmed by X-ray photoelectron spectroscopy (XPS) and UV-photoemission spectroscopy (UPS). Electrochemical characterization reveals that the catalytic activity of graphene for iodine reduction enhanced with increasing plasma treatment time, which is attributed to increase in catalytic sites of graphene for charge transfer. The fluorinated graphene is characterized as a counter-electrode (CE) in a dye-sensitized solar cell (DSSC) which shows ~ 2.56% photon to electron conversion efficiency with ~11 mAcm−2 current density. Second, the large scale graphene film is covalently functionalized with HNO3 for high efficiency electro-catalytic electrode for DSSC. The XPS and UPS confirm the covalent attachment of C-OH, C(O)OH and NO3- moieties with carbon atoms through sp2-sp3 hybridization and Fermi level shift of graphene occurs under different doping concentrations, respectively. Finally, CoS-implanted graphene (G-CoS) film was prepared using CVD followed by SILAR method. The G-CoS electro-catalytic electrodes are characterized in a DSSC CE and is found to be highly electro-catalytic towards iodine reduction with low charge transfer resistance (Rct ~5.05 Ωcm 2) and high exchange current density (J0~2.50 mAcm -2). The improved performance compared to the pristine graphene is attributed to the increased number of active catalytic sites of G-CoS and highly conducting path of graphene. We also studied the synthesis and characterization of graphene-carbon nanotube (CNT) hybrid film consisting of graphene supported by vertical CNTs on a Si substrate. The hybrid film is inverted and transferred to flexible substrates for its application in flexible electronics, demonstrating a distinguishable variation of electrical conductivity for both tension and compression. Furthermore, both turn-on field and total emission current was found to depend strongly on the bending radius of the film and were found to vary in ranges of 0.8 - 3.1 V/μm and 4.2 - 0.4 mA, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mesoporous materials has been an special attention, among them was discovered in the 1990´s the mesoporous molecular sieve of SBA-15 type. The good features of the SBA- 15 makes this material very promising in catalysis, however, due to the absence of native active sites, it has low catalytic activity. In this way, different metals and oxides have been included in this molecular sieve as a means of introducing active sites and increase its catalytic activity. Among the oxides that are being researched, there is the niobium oxide, which presents strong acid sites and exists in abundance. Brazil is the largest producer of the mineral. On the other hand, the production of biofuels has been desired, but it requires the development of new catalysts for this purpose. The aim of this work was to develop silicate of niobium by impregnation and by new synthesis method for application in the cracking of moringa oil. The methodology consisted of inserting the niobium oxide either by postsynthesis process using wet impregnation and direct insertion. For direct insert a new method was developed for pH adjustment, being tested different pH, and the pH 2.2 was used different ratios of Si/Nb. The materials were characterized by different techniques such as: XRD, N2 adsorption, SEM, EDS, UV-visible, TG/DTG, DSC, TEM, acidity by thermodesorption of n-butilamine and FTIR. After this part of the catalysts developed by the two methods were tested in the thermocatalytic cracking of moringa oil, being used a simple distillation. All silicates of Niobium obtained showed a highly ordered structure, having high specific areas, good distribution of pore diameters, beyond present a morphology in the form of fibers. In the catalysts after synthesis was observed that the niobium inserted has so as octahedrally and tetrahedrally coordinated, demonstrating that there were also oxides formed on the external surface of SBA-15. The materials obtained in the direct synthesis are only tetrahedrally coordinated. The new synthesis method of pH adjusting by using the buffer solution for it, proved to be very efficient for the production of such materials, because the materials obtained showed characteristics and structures similar to the molecular sieve of SBA-15 type. Among the pH tested the material that presented better characteristics was synthesized at pH 2.2. The application of these materials in catalytic cracking showed a higher formation of organic liquids when compared to thermal cracking, in addition to significantly reducing the acidity and residues formed, demonstrating that the use of silicates of Niobium increases both the conversion and the selectivity of the products.