958 resultados para Carnap Entropy
Resumo:
Density functional calculations of the structure, potential energy surface and reactivity for organic systems closely related to bisphenol-A-polycarbonate (BPA-PC) provide the basis for a model describing the ring-opening polymerization of its cyclic oligomers by nucleophilic molecules. Monte Carlo simulations using this model show a strong tendency to polymerize that is increased by increasing density and temperature, and is greater in 3D than in 2D. Entropy in the distribution of inter-particle bonds is the driving force for chain formation. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Ring opening polymerization of bisphenol A polycarbonate is studied by Monte Carlo simulations of a model comprising a fixed number of Lennard-Jones particles and harmonic bonds [J. Chem. Phys. 115, 3895 (2001)]. Bond interchanges produced by a low concentration (0.10%less than or equal toc(a)less than or equal to0.36%) of chemically active particles lead to equilibrium polymerization. There is a continuous transition in both 2D and 3D from unpolymerized cyclic oligomers at low density to a system of linear chains at high density, and the polymeric phase is much more stable in three dimensions than in two. The steepness of the polymerization transition increases rapidly as c(a) decreases, suggesting that it is discontinuous in the limit c(a)-->0. The transition is entropy driven, since the average potential energy increases systematically upon polymerization, and there is a steady decline in the degree of polymerization as the temperature is lowered. The mass distribution functions for open chains and for rings are unimodal, with exponentially decaying tails that can be fitted by Zimm-Schulz functions and simpler exponential forms. (C) 2002 American Institute of Physics.
Resumo:
A model of the polymerization of ring oligomers of bisphenol A polycarbonate (BPA-PC) is used to investigate the influence of dimensionality (2D or 3D), density and temperature on the size distribution of the polymer chains. The polymerization step is catalyzed by a single active particle, conserves the number and type of the chemical bonds, and occurs without a significant gain in either potential energy or configurational entropy. Monte Carlo and molecular dynamics simulations show that polymerization of cyclic oligomers occurs readily at high density and is driven by the entropy associated with the distribution of interparticle bonds. Polymerization competes at lower densities with long range diffusion, which favors small molecular species, and is prevented if the system is sufficiently dilute. Polymerization occurs in 2D via a weakly first order transition as a function of density and is characterized by low hysteresis and large fluctuations in the size of polymer chains. Polymerization occurs more readily in 3D than in 2D, and is favored by increasing temperature, as expected for an entropy-driven process. (C) 2001 American Institute of Physics.
Resumo:
As semiconductor electronic devices scale to the nanometer range and quantum structures (molecules, fullerenes, quantum dots, nanotubes) are investigated for use in information processing and storage, it, becomes useful to explore the limits imposed by quantum mechanics on classical computing. To formulate the problem of a quantum mechanical description of classical computing, electronic device and logic gates are described as quantum sub-systems with inputs treated as boundary conditions, outputs expressed.is operator expectation values, and transfer characteristics and logic operations expressed through the sub-system Hamiltonian. with constraints appropriate to the boundary conditions. This approach, naturally, leads to a description of the subsystem.,, in terms of density matrices. Application of the maximum entropy principle subject to the boundary conditions (inputs) allows for the determination of the density matrix (logic operation), and for calculation of expectation values of operators over a finite region (outputs). The method allows for in analysis of the static properties of quantum sub-systems.
Resumo:
An overview of a many-body approach to calculation of electronic transport in molecular systems is given. The physics required to describe electronic transport through a molecule at the many-body level, without relying on commonly made assumptions such as the Landauer formalism or linear response theory, is discussed. Physically, our method relies on the incorporation of scattering boundary conditions into a many-body wavefunction and application of the maximum entropy principle to the transport region. Mathematically, this simple physical model translates into a constrained nonlinear optimization problem. A strategy for solving the constrained optimization problem is given. (C) 2004 Wiley Periodicals, Inc.
Resumo:
We analyse a picture of transport in which two large but finite charged electrodes discharge across a nanoscale junction. We identify a functional whose minimization, within the space of all bound many-body wavefunctions, defines an instantaneous steady state. We also discuss factors that favour the onset of steady-state conduction in such systems, make a connection with the notion of entropy, and suggest a novel source of steady-state noise. Finally, we prove that the true many-body total current in this closed system is given exactly by the one-electron total current, obtained from time-dependent density-functional theory.
Resumo:
Cooling of mechanical resonators is currently a popular topic in many fields of physics including ultra-high precision measurements, detection of gravitational waves and the study of the transition between classical and quantum behaviour of a mechanical system. Here we report the observation of self-cooling of a micromirror by radiation pressure inside a high-finesse optical cavity. In essence, changes in intensity in a detuned cavity, as caused by the thermal vibration of the mirror, provide the mechanism for entropy flow from the mirror's oscillatory motion to the low-entropy cavity field. The crucial coupling between radiation and mechanical motion was made possible by producing free-standing micromirrors of low mass (m approximately 400 ng), high reflectance (more than 99.6%) and high mechanical quality (Q approximately 10,000). We observe cooling of the mechanical oscillator by a factor of more than 30; that is, from room temperature to below 10 K. In addition to purely photothermal effects we identify radiation pressure as a relevant mechanism responsible for the cooling. In contrast with earlier experiments, our technique does not need any active feedback. We expect that improvements of our method will permit cooling ratios beyond 1,000 and will thus possibly enable cooling all the way down to the quantum mechanical ground state of the micromirror.
Resumo:
The ionic nature of ionic liquids (ILs) results in a unique combination of intrinsic properties that produces increasing interest in the research of these fluids as environmentally friendly "neoteric" solvents. One of the main research fields is their exploitation as solvents for liquid-liquid extractions, but although ILs cannot vaporize leading to air pollution, they present non-negligible miscibility with water that may be the cause of some environmental aquatic risks. It is thus important to know the mutual solubilities between ILs and water before their industrial applications. In this work, the mutual solubilities of hydrophobic yet hygroscopic imidazolium-, pyridinium-, pyrrolidinium-, and piperidinium-based ILs in combination with the anions bis(trifluoromethylsulfonyl)imide, hexafluorophosphate, and tricyanomethane with water were measured between 288.15 and 318.15 K. The effect of the ILs structural combinations, as well as the influence of several factors, namely cation side alkyl chain length, the number of cation substitutions, the cation family, and the anion identity in these mutual solubilities are analyzed and discussed. The hydrophobicity of the anions increases in the order [C(CN)3] <[PF6] <[Tf2N] while the hydrophobicity of the cations increases from [Cnmim] <[Cnmpy] [Cnmpyr] <[Cnmpip] and with the alkyl chain length increase. From experimental measurements of the temperature dependence of ionic liquid solubilities in water, the thermodynamic molar functions of solution, such as Gibbs energy, enthalpy, and entropy at infinite dilution were determined, showing that the solubility of these ILs in water is entropically driven and that the anion solvation at the IL-rich phase controls their solubilities in water. The COSMO-RS, a predictive method based on unimolecular quantum chemistry calculations, was also evaluated for the description of the water-IL binary systems studied, where it showed to be capable of providing an acceptable qualitative agreement with the experimental data.
Resumo:
Ionic liquids (ILs) have recently garnered increased attention because of their potential environmental benefits as "green" replacements over conventional volatile organic solvents. While ILs cannot significantly volatilize and contribute to air pollution, even the most hydrophobic ones present some miscibility with water posing environmental risks to the aquatic ecosystems. Thus, the knowledge of ILs toxicity and their water solubility must be assessed before an accurate judgment of their environmental benefits and prior to their industrial applications. In this work, the mutual solubilities for [C2-C8mim][Tf2N] (n-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) and water between 288.15 and 318.15 K at atmospheric pressure were measured. Although these are among the most hydrophobic ionic liquids known, the solubility of water in these compounds is surprisingly large, ranging from 0.17 to 0.36 in mole fraction, while the solubility of these ILs in water is much lower ranging from 3.2 × 10-5 to 1.1 × 10-3 in mole fraction, in the temperature and pressure conditions studied. From the experimental data, the molar thermodynamic functions of solution and solvation such as Gibbs energy, enthalpy, and entropy at infinite dilution were estimated, showing that the solubility of these ILs in water is entropically driven. The predictive capability of COSMO-RS, a model based on unimolecular quantum chemistry calculations, was evaluated for the description of the binary systems investigated providing an acceptable agreement between the model predictions and the experimental data both with the temperature dependence and with the ILs structural variations.
Resumo:
In this letter, a standard postnonlinear blind source separation algorithm is proposed, based on the MISEP method, which is widely used in linear and nonlinear independent component analysis. To best suit a wide class of postnonlinear mixtures, we adapt the MISEP method to incorporate a priori information of the mixtures. In particular, a group of three-layered perceptrons and a linear network are used as the unmixing system to separate sources in the postnonlinear mixtures, and another group of three-layered perceptron is used as the auxiliary network. The learning algorithm for the unmixing system is then obtained by maximizing the output entropy of the auxiliary network. The proposed method is applied to postnonlinear blind source separation of both simulation signals and real speech signals, and the experimental results demonstrate its effectiveness and efficiency in comparison with existing methods.
Resumo:
We studied the alpha-olefin selectivity in Fischer-Tropsch (FT) synthesis using density functional theory (131717) calculations. We calculated the relevant elementary steps from C-2 to C-6 species. Our results showed that the barriers of hydrogenation and dehydrogenation reactions were constant with different chain lengths, and the chemisorption energies of alpha-olefins from DFT calculations also were very similar, except for C-2 species. A simple expression of the paraffin/olefin ratio was obtained based on a kinetic model. Combining the expression of the paraffin/olefin ratio and our calculation results, experimental findings are satisfactorily explained. We found that the physical origin of the chain length dependence of paraffin/olefin ratio is the chain length dependence of both the van der Waals interaction between adsorbed alpha-olefins and metal surfaces and the entropy difference between adsorbed and gaseous alpha-olefins, and that the greater chemisorption energy of ethylene is the main reason for the abnormal ethane/ethylene ratio. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
We present Roche tomograms of the G5-G8 IV/V secondary star in the long-period cataclysmic variable BV Cen reconstructed from Magellan Inamori Kyocera Echelle spectrograph echelle data taken on the Magellan Clay 6.5-m telescope. The tomograms show the presence of a number of large, cool star-spots on BV Cen for the first time. In particular, we find a large high-latitude spot which is deflected from the rotational axis in the same direction as seen on the K3-K5 IV/V secondary star in the cataclysmic variable AE Aqr. BV Cen also shows a similar relative paucity of spots at latitudes between 40° and 50° when compared with AE Aqr. Furthermore, we find evidence for an increased spot coverage around longitudes facing the white dwarf which supports models invoking star-spots at the L1 point to explain the low states observed in some cataclysmic variables. In total, we estimate that some 25 per cent of the Northern hemisphere of BV Cen is spotted. We also find evidence for a faint, narrow, transient emission line with characteristics reminiscent of the peculiar low-velocity emission features observed in some outbursting dwarf novae. We interpret this feature as a slingshot prominence from the secondary star and derive a maximum source size of 75000 km and a minimum altitude of 160000 km above the orbital plane for the prominence. The entropy landscape technique was applied to determine the system parameters of BV Cen. We find M1 = 1.18 +/-0.280.16Msolar and M2 = 1.05 +/-0.230.14Msolar and an orbital inclination of i = 53° +/- 4° at an optimal systemic velocity of ? = -22.3 km s-1. Finally, we also report on the previously unknown binarity of the G5IV star HD 220492.
Resumo:
We present a set of Roche tomography reconstructions of the secondary stars in the cataclysmic variables AM Her, QQ Vul, IP Peg and HU Aqr. The image reconstructions show distinct asymmetries in the irradiation pattern for all four systems that can be attributed to shielding of the secondary star by the accretion stream/column in AM Her, QQ Vul and HU Aqr, and increased irradiation by the bright-spot in IP Peg. We use the entropy landscape technique to derive accurate system parameters (M-1, M-2, i and gamma) for the four binaries. In principle, this technique should provide the most reliable mass determinations available, since the intensity distribution across the secondary star is known. We also find that the intensity distribution can systematically affect the value of gamma derived from circular orbit fits to radial velocity variations.
Resumo:
We discuss the generation of states close to the boundary family of maximally entangled mixed states as defined by the use of concurrence and linear entropy. The coupling of two qubits to a dissipation-affected bosonic mode is able to produce a bipartite state having, for all practical purposes, the entanglement and mixedness properties of one of such boundary states. We thoroughly study the effects that thermal and squeezed characters of the bosonic mode have in such a process and we discuss tolerance to qubit phase-damping mechanisms. The nondemanding nature of the scheme makes it realizable in a matter-light-based physical setup, which we address in some details.
Resumo:
The common lizard (Zootoca vivipara) is Ireland’s only native reptile, forming a key part of the island’s biodiversity. However, there is a general paucity of distributional and abundance data for the species. In this study, we collated incidental records for common lizard sightings to define the distribution of the species in Northern Ireland. Maximum entropy modelling was employed to describe species-habitat associations. The resulting predicted landscape favourability was used to evaluate the current status of the species based on the distribution of its maximum potential range in relation to the degree of fragmentation of remaining suitable habitat. In common with previous studies in the Republic of Ireland, sightings were highly clustered indicating under-recording, observer bias, and fragmentation of suitable habitat. A total of 98 records were collated from 1905 to 2009. The species was recorded in 63 (ca. 34%) of 186 × 10 km Northern Irish grid squares. Lizard occurrence was strongly and positively associated with landscapes dominated by heathland, bog and coastal habitats. The single best approximating model correctly classified the presence of lizards in 84.2% of cases. Upland heath, lowland raised bog and sand dune systems are all subject to Habitat Action Plans in Northern Ireland and are threatened by conversion to agriculture, afforestation, invasive species encroachment and infrastructural development. Consequently, remaining common lizard populations are likely to be small, isolated and highly fragmented. Establishment of an ecological network to preserve connectivity of remaining heath and bog will not only benefit remaining common lizard populations but biodiversity in general.