814 resultados para Career path
Resumo:
Hemisity refers to binary thinking and behavioral style differences between right and left brain-oriented individuals. The inevitability of hemisity became clear when it was discovered by magnetic resonance imaging (MRI) that an anatomical element of the executive system was unilaterally embedded in either the right or the left side of the ventral gyrus of the anterior cingulate cortex in an idiosyncratic manner that was congruent with an individual's inherent hemisity subtype. Based upon the MRI-calibrated hemisity of many individuals, a set of earlier biophysical and questionnaire hemisity assays was calibrated for accuracy and found appropriate for use in the investigation of the hemisity of individuals and groups. It had been reported that a partial sorting of individuals into hemisity right and left brain-oriented subgroups occurred during the process of higher education and professional development. Here, these results were extended by comparison of the hemisity of a putative unsorted population of 1,049 high school upper classmen, with that of 228 university freshmen. These hemisity outcomes were further compared with that of 15 university librarians, here found to be predominantly left brain-oriented, and 91 academically trained musicians, including 47 professional pianists, here found to be mostly right brainers. The results further supported the existence of substantial hemisity selection occurring during the process of higher education and in professional development.
Resumo:
Acute stress reactions (ASR) and postpartum depressive symptoms (PDS) are frequent after childbirth. The present study addresses the change and overlap of ASR and PDS from the 1- to 3-week postpartum and examines the interplay of caregiver support and subjective birth experience with regard to the development of ASR/PDS within a longitudinal path model.
Resumo:
BACKGROUND: The medical specialties chosen by doctors for their careers play an important part in the development of health-care services. This study aimed to investigate the influence of gender, personality traits, career motivation and life goal aspirations on the choice of medical specialty. METHODS: As part of a prospective cohort study of Swiss medical school graduates on career development, 522 fourth-year residents were asked in what specialty they wanted to qualify. They also assessed their career motivation and life goal aspirations. Data concerning personality traits such as sense of coherence, self-esteem, and gender role orientation were collected at the first assessment, four years earlier, in their final year of medical school. Data analyses were conducted by univariate and multivariate analyses of variance and covariance. RESULTS: In their fourth year of residency 439 (84.1%) participants had made their specialty choice. Of these, 45 (8.6%) subjects aspired to primary care, 126 (24.1%) to internal medicine, 68 (13.0%) to surgical specialties, 31 (5.9%) to gynaecology & obstetrics (G&O), 40 (7.7%) to anaesthesiology/intensive care, 44 (8.4%) to paediatrics, 25 (4.8%) to psychiatry and 60 (11.5%) to other specialties. Female residents tended to choose G&O, paediatrics, and anaesthesiology, males more often surgical specialties; the other specialties did not show gender-relevant differences of frequency distribution. Gender had the strongest significant influence on specialty choice, followed by career motivation, personality traits, and life goals. Multivariate analyses of covariance indicated that career motivation and life goals mediated the influence of personality on career choice. Personality traits were no longer significant after controlling for career motivation and life goals as covariates. The effect of gender remained significant after controlling for personality traits, career motivation and life goals. CONCLUSION: Gender had the greatest impact on specialty and career choice, but there were also two other relevant influencing factors, namely career motivation and life goals. Senior physicians mentoring junior physicians should pay special attention to these aspects. Motivational guidance throughout medical training should not only focus on the professional career but also consider the personal life goals of those being mentored.
Resumo:
We previously showed that lifetime cumulative lead dose, measured as lead concentration in the tibia bone by X-ray fluorescence, was associated with persistent and progressive declines in cognitive function and with decreases in MRI-based brain volumes in former lead workers. Moreover, larger region-specific brain volumes were associated with better cognitive function. These findings motivated us to explore a novel application of path analysis to evaluate effect mediation. Voxel-wise path analysis, at face value, represents the natural evolution of voxel-based morphometry methods to answer questions of mediation. Application of these methods to the former lead worker data demonstrated potential limitations in this approach where there was a tendency for results to be strongly biased towards the null hypothesis (lack of mediation). Moreover, a complimentary analysis using anatomically-derived regions of interest volumes yielded opposing results, suggesting evidence of mediation. Specifically, in the ROI-based approach, there was evidence that the association of tibia lead with function in three cognitive domains was mediated through the volumes of total brain, frontal gray matter, and/or possibly cingulate. A simulation study was conducted to investigate whether the voxel-wise results arose from an absence of localized mediation, or more subtle defects in the methodology. The simulation results showed the same null bias evidenced as seen in the lead workers data. Both the lead worker data results and the simulation study suggest that a null-bias in voxel-wise path analysis limits its inferential utility for producing confirmatory results.
Resumo:
In previous studies, it was shown that there is a gunshot-related transport of skin particles and microorganisms from the entrance region into the depth of the bullet path. The present study deals with the question of whether gunshots may also cause a retrograde transport of skin particles and microorganisms from the bullet exit region back into the bullet path. For this purpose, we used a composite model consisting of rectangular gelatin blocks and pig skin. The skin pieces were firmly attached to the gelatin blocks on the side where the bullet was to exit. Prior to the test shots, the outer surface of the pig skin was contaminated with a thin layer of a defined bacterial suspension. After drying the skin, test shots were fired from a distance of 10 m using cartridges calibre .38 spec. with different bullet types. Subsequent analyses showed that in all shots with full penetration of the composite model, the bullet path contained displaced skin particles and microorganisms from the skin surface at the exit site. These could be regularly detected in the distal 6-8 cm of the track, occasionally up to a distance of 18 cm from the exit hole. The distribution of skin particles and microorganisms is presented and the possible mechanism of this retrograde transport is discussed.
Resumo:
Range estimation is the core of many positioning systems such as radar, and Wireless Local Positioning Systems (WLPS). The estimation of range is achieved by estimating Time-of-Arrival (TOA). TOA represents the signal propagation delay between a transmitter and a receiver. Thus, error in TOA estimation causes degradation in range estimation performance. In wireless environments, noise, multipath, and limited bandwidth reduce TOA estimation performance. TOA estimation algorithms that are designed for wireless environments aim to improve the TOA estimation performance by mitigating the effect of closely spaced paths in practical (positive) signal-to-noise ratio (SNR) regions. Limited bandwidth avoids the discrimination of closely spaced paths. This reduces TOA estimation performance. TOA estimation methods are evaluated as a function of SNR, bandwidth, and the number of reflections in multipath wireless environments, as well as their complexity. In this research, a TOA estimation technique based on Blind signal Separation (BSS) is proposed. This frequency domain method estimates TOA in wireless multipath environments for a given signal bandwidth. The structure of the proposed technique is presented and its complexity and performance are theoretically evaluated. It is depicted that the proposed method is not sensitive to SNR, number of reflections, and bandwidth. In general, as bandwidth increases, TOA estimation performance improves. However, spectrum is the most valuable resource in wireless systems and usually a large portion of spectrum to support high performance TOA estimation is not available. In addition, the radio frequency (RF) components of wideband systems suffer from high cost and complexity. Thus, a novel, multiband positioning structure is proposed. The proposed technique uses the available (non-contiguous) bands to support high performance TOA estimation. This system incorporates the capabilities of cognitive radio (CR) systems to sense the available spectrum (also called white spaces) and to incorporate white spaces for high-performance localization. First, contiguous bands that are divided into several non-equal, narrow sub-bands that possess the same SNR are concatenated to attain an accuracy corresponding to the equivalent full band. Two radio architectures are proposed and investigated: the signal is transmitted over available spectrum either simultaneously (parallel concatenation) or sequentially (serial concatenation). Low complexity radio designs that handle the concatenation process sequentially and in parallel are introduced. Different TOA estimation algorithms that are applicable to multiband scenarios are studied and their performance is theoretically evaluated and compared to simulations. Next, the results are extended to non-contiguous, non-equal sub-bands with the same SNR. These are more realistic assumptions in practical systems. The performance and complexity of the proposed technique is investigated as well. This study’s results show that selecting bandwidth, center frequency, and SNR levels for each sub-band can adapt positioning accuracy.
Resumo:
Measuring shallow seismic sources provides a way to reveal processes that cannot be directly observed, but the correct interpretation and value of these signals depend on the ability to distinguish source from propagation effects. Furthermore, seismic signals produced by a resonating source can look almost identical to those produced by impulsive sources, but modified along the path. Distinguishing these two phenomena can be accomplished by examining the wavefield with small aperture arrays or by recording seismicity near to the source when possible. We examine source and path effects in two different environments: Bering Glacier, Alaska and Villarrica Volcano, Chile. Using three 3-element seismic arrays near the terminus of the Bering Glacier, we have identified and located both terminus calving and iceberg breakup events. We show that automated array analysis provided a robust way to locate icequake events using P waves. This analysis also showed that arrivals within the long-period codas were incoherent within the small aperture arrays, demonstrating that these codas previously attributed to crack resonance were in fact a result of a complicated path rather than a source effect. At Villarrica Volcano, seismometers deployed from near the vent to ~10 km revealed that a several cycle long-period source signal recorded at the vent appeared elongated in the far-field. We used data collected from the stations nearest to the vent to invert for the repetitive seismic source, and found it corresponded to a shallow force within the lava lake oriented N75°E and dipping 7° from horizontal. We also used this repetitive signal to search the data for additional seismic and infrasonic properties which included calculating seismic-acoustic delay times, volcano acoustic-seismic ratios and energies, event frequency, and real-time seismic amplitude measurements. These calculations revealed lava lake level and activity fluctuations consistent with lava lake level changes inferred from the persistent infrasonic tremor.