987 resultados para Caatinga animals - Conservation
Resumo:
Conservation laws in physics are numerical invariants of the dynamics of a system. In cellular automata (CA), a similar concept has already been defined and studied. To each local pattern of cell states a real value is associated, interpreted as the “energy” (or “mass”, or . . . ) of that pattern.The overall “energy” of a configuration is simply the sum of the energy of the local patterns appearing on different positions in the configuration. We have a conservation law for that energy, if the total energy of each configuration remains constant during the evolution of the CA. For a given conservation law, it is desirable to find microscopic explanations for the dynamics of the conserved energy in terms of flows of energy from one region toward another. Often, it happens that the energy values are from non-negative integers, and are interpreted as the number of “particles” distributed on a configuration. In such cases, it is conjectured that one can always provide a microscopic explanation for the conservation laws by prescribing rules for the local movement of the particles. The onedimensional case has already been solved by Fuk´s and Pivato. We extend this to two-dimensional cellular automata with radius-0,5 neighborhood on the square lattice. We then consider conservation laws in which the energy values are chosen from a commutative group or semigroup. In this case, the class of all conservation laws for a CA form a partially ordered hierarchy. We study the structure of this hierarchy and prove some basic facts about it. Although the local properties of this hierarchy (at least in the group-valued case) are tractable, its global properties turn out to be algorithmically inaccessible. In particular, we prove that it is undecidable whether this hierarchy is trivial (i.e., if the CA has any non-trivial conservation law at all) or unbounded. We point out some interconnections between the structure of this hierarchy and the dynamical properties of the CA. We show that positively expansive CA do not have non-trivial conservation laws. We also investigate a curious relationship between conservation laws and invariant Gibbs measures in reversible and surjective CA. Gibbs measures are known to coincide with the equilibrium states of a lattice system defined in terms of a Hamiltonian. For reversible cellular automata, each conserved quantity may play the role of a Hamiltonian, and provides a Gibbs measure (or a set of Gibbs measures, in case of phase multiplicity) that is invariant. Conversely, every invariant Gibbs measure provides a conservation law for the CA. For surjective CA, the former statement also follows (in a slightly different form) from the variational characterization of the Gibbs measures. For one-dimensional surjective CA, we show that each invariant Gibbs measure provides a conservation law. We also prove that surjective CA almost surely preserve the average information content per cell with respect to any probability measure.
Resumo:
Background: The enzyme fatty acid synthase (FASN) is highly expressed in many human carcinomas and its inhibition is cytotoxic to human cancer cells. The use of FASN inhibitors has been limited until now by anorexia and weight loss, which is associated with the stimulation of fatty acid oxidation. Materials and Methods: The in vitro effect of (-)-epigallocatechin-3-gallate (EGCG) on fatty acid metabolism enzymes, on apoptosis and on cell signalling was evaluated. In vivo, the effect of EGCG on animal body weight was addressed. Results: EGCG inhibited FASN activity, induced apoptosis and caused a marked decrease of human epidermal growth factor receptor 2 (HER2), phosphatidylinositol 3-kinase (PI3K)/AKT and extracellular (signal)-regulated kinase (ERK) 1/2 proteins, in breast cancer cells. EGCG did not induce a stimulatory effect on CPT-1 activity in vitro (84% of control), or on animal body weight in vivo (99% of control). Conclusion: EGCG is a FASN inhibitor with anticancer activity which does not exhibit cross-activation of fatty acid oxidation and does not induce weight loss, suggesting its potential use as an anticancer drug.
Resumo:
Mediterranean endemic freshwater fish are among the most threatened biota in the world. Distinguishing the role of different extinction drivers and their potential interactions is crucial for achieving conservation goals. While some authors argue that invasive species are a main driver of native species declines, others see their proliferation as a co-occurring process to biodiversity loss driven by habitat degradation. It is difficult to discern between the two potential causes given that few invaded ecosystems are free from habitat degradation, and that both factors may interact in different ways. Here we analyze the relative importance of habitat degradation and invasive species in the decline of native fish assemblages in the Guadiana River basin (southwestern Iberian Peninsula) using an information theoretic approach to evaluate interaction pathways between invasive species and habitat degradation (structural equation modeling, SEM). We also tested the possible changes in the functional relationships between invasive and native species, measured as the per capita effect of invasive species, using ANCOVA. We found that the abundance of invasive species was the best single predictor of natives’ decline and had the highest Akaike weight among the set of predictor variables examined. Habitat degradation neither played an active role nor influenced the per capita effect of invasive species on natives. Our analyses indicated that downstream reaches and areas close to reservoirs had the most invaded fish assemblages, independently of their habitat degradation status. The proliferation of invasive species poses a strong threat to the persistence of native assemblages in highly fluctuating environments. Therefore, conservation efforts to reduce native freshwater fish diversity loss in Mediterranean rivers should focus on mitigating the effect of invasive species and preventing future invasions
Resumo:
Invasive nonnative species are a major problem in river ecosystems, and have large ecological and economic costs. Few ecosystems can resist invasions. The species that tend to invade most readily are those that humans. Introduce the most, and the ecosystems they invade are those with the most human activity. Most invasions are irreversible, and control is expensive, so efforts should be focused on prevention of future invasions
Resumo:
We have pragmatic and ethical obligations to conserve rivers and their biodiversity. This chapter outlines how and why river conservation is important. To make a difference, we must act as individuals and groups, using water wisely and protecting vulnerable assets such as water quality, riparian zones and aquatic biodiversity
Resumo:
Nonnative brook trout Salvelinus fontinalis are abundant in Pine Creek and its main tributary, Bogard Spring Creek, California. These creeks historically provided the most spawning and rearing habitat for endemic Eagle Lake rainbow trout Oncorhynchus mykiss aquilarum. Three-pass electrofishing removal was conducted in 2007–2009 over the entire 2.8-km length of Bogard Spring Creek to determine whether brook trout removal was a feasible restoration tool and to document the life history characteristics of brook trout in a California meadow stream. After the first 2 years of removal, brook trout density and biomass were severely reduced from 15,803 to 1,192 fish/ha and from 277 to 31 kg/ha, respectively. Average removal efficiency was 92–97%, and most of the remaining fish were removed in the third year. The lack of a decrease in age-0 brook trout abundance between 2007 and 2008 after the removal of more than 4,000 adults in 2007 suggests compensatory reproduction of mature fish that survived and higher survival of age-0 fish. However, recruitment was greatly reduced after 2 years of removal and is likely to be even more depressed after the third year of removal assuming that immigration of fish from outside the creek continues to be minimal. Brook trout condition, growth, and fecundity indicated a stunted population at the start of the study, but all three features increased significantly every year, demonstrating compensatory effects. Although highly labor intensive, the use of electrofishing to eradicate brook trout may be feasible in Bogard Spring Creek and similar small streams if removal and monitoring are continued annually and if other control measures (e.g., construction of barriers) are implemented. Our evidence shows that if brook trout control measures continue and if only Eagle Lake rainbow trout are allowed access to the creek, then a self-sustaining population ofEagle Lake rainbow trout can become reestablished
Resumo:
Article que descriu els organismes animals del litoral gironí
Resumo:
Ja fa temps que es debat la necessitat, la conveniència i la moralitat que determinats animals disposin d'una llei que els atorgui certs drets en cursiva, atès que originalment aquesta paraula només s'aplica a persones. Als EUA, per exemple, hi ha més de 120 facultats on s'imparteixen cursos sobre aquest tema. El motiu és que molts animals tenen la capacitat fisiològica de sentir dolor i plaer, poden comunicar-se, posseeixen memòria i són capaços d'aprendre [...].
Resumo:
Rivers are among the most diverse and threatened ecosystems on Earth, as they are impacted by increasing human pressures. Because rivers provide essential goods and services, conservation of these ecosystems is a requisite for sustainable development. Therefore, we must seek ways to conserve healthy rivers and to restore degraded ones
Resumo:
The integration of ecological and evolutionary data is highly valuable for conservation planning. However, it has been rarely used in the marine realm, where the adequate design of marine protected areas (MPAs) is urgently needed. Here, we examined the interacting processes underlying the patterns of genetic structure and demographic strucuture of a highly vulnerable Mediterranean habitat-forming species (i.e. Paramuricea clavata (Risso, 1826)), with particular emphasis on the processes of contemporary dispersal, genetic drift, and colonization of a new population. Isolation by distance and genetic discontinuities were found, and three genetic clusters were detected; each submitted to variations in the relative impact of drift and gene flow. No founder effect was found in the new population. The interplay of ecology and evolution revealed that drift is strongly impacting the smallest, most isolated populations, where partial mortality of individuals was highest. Moreover, the eco-evolutionary analyses entailed important conservation implications for P. clavata. Our study supports the inclusion of habitat-forming organisms in the design of MPAs and highlights the need to account for genetic drift in the development of MPAs. Moreover, it reinforces the importance of integrating genetic and demographic data in marine conservation.
Resumo:
Genetic diversity is one of the levels of biodiversity that the World Conservation Union (IUCN) has recognized as being important to preserve. This is because genetic diversity is fundamental to the future evolution and to the adaptive flexibility of a species to respond to the inherently dynamic nature of the natural world. Therefore, the key to maintaining biodiversity and healthy ecosystems is to identify, monitor and maintain locally-adapted populations, along with their unique gene pools, upon which future adaptation depends. Thus, conservation genetics deals with the genetic factors that affect extinction risk and the genetic management regimes required to minimize the risk. The conservation of exploited species, such as salmonid fishes, is particularly challenging due to the conflicts between different interest groups. In this thesis, I conduct a series of conservation genetic studies on primarily Finnish populations of two salmonid fish species (European grayling, Thymallus thymallus, and lake-run brown trout, Salmo trutta) which are popular recreational game fishes in Finland. The general aim of these studies was to apply and develop population genetic approaches to assist conservation and sustainable harvest of these populations. The approaches applied included: i) the characterization of population genetic structure at national and local scales; ii) the identification of management units and the prioritization of populations for conservation based on evolutionary forces shaping indigenous gene pools; iii) the detection of population declines and the testing of the assumptions underlying these tests; and iv) the evaluation of the contribution of natural populations to a mixed stock fishery. Based on microsatellite analyses, clear genetic structuring of exploited Finnish grayling and brown trout populations was detected at both national and local scales. Finnish grayling were clustered into three genetically distinct groups, corresponding to northern, Baltic and south-eastern geographic areas of Finland. The genetic differentiation among and within population groups of grayling ranged from moderate to high levels. Such strong genetic structuring combined with low genetic diversity strongly indicates that genetic drift plays a major role in the evolution of grayling populations. Further analyses of European grayling covering the majority of the species’ distribution range indicated a strong global footprint of population decline. Using a coalescent approach the beginning of population reduction was dated back to 1 000-10 000 years ago (ca. 200-2 000 generations). Forward simulations demonstrated that the bottleneck footprints measured using the M ratio can persist within small populations much longer than previously anticipated in the face of low levels of gene flow. In contrast to the M ratio, two alternative methods for genetic bottleneck detection identified recent bottlenecks in six grayling populations that warrant future monitoring. Consistent with the predominant role of random genetic drift, the effective population size (Ne) estimates of all grayling populations were very low with the majority of Ne estimates below 50. Taken together, highly structured local populations, limited gene flow and the small Ne of grayling populations indicates that grayling populations are vulnerable to overexploitation and, hence, monitoring and careful management using the precautionary principles is required not only in Finland but throughout Europe. Population genetic analyses of lake-run brown trout populations in the Inari basin (northernmost Finland) revealed hierarchical population structure where individual populations were clustered into three population groups largely corresponding to different geographic regions of the basin. Similar to my earlier work with European grayling, the genetic differentiation among and within population groups of lake-run brown trout was relatively high. Such strong differentiation indicated that the power to determine the relative contribution of populations in mixed fisheries should be relatively high. Consistent with these expectations, high accuracy and precision in mixed stock analysis (MSA) simulations were observed. Application of MSA to indigenous fish caught in the Inari basin identified altogether twelve populations that contributed significantly to mixed stock fisheries with the Ivalojoki river system being the major contributor (70%) to the total catch. When the contribution of wild trout populations to the fisheries was evaluated regionally, geographically nearby populations were the main contributors to the local catches. MSA also revealed a clear separation between the lower and upper reaches of Ivalojoki river system – in contrast to lower reaches of the Ivalojoki river that contributed considerably to the catch, populations from the upper reaches of the Ivalojoki river system (>140 km from the river mouth) did not contribute significantly to the fishery. This could be related to the available habitat size but also associated with a resident type life history and increased cost of migration. The studies in my thesis highlight the importance of dense sampling and wide population coverage at the scale being studied and also demonstrate the importance of critical evaluation of the underlying assumptions of the population genetic models and methods used. These results have important implications for conservation and sustainable fisheries management of Finnish populations of European grayling and brown trout in the Inari basin.
Resumo:
O fungo Monosporascus cannonballus é um importante patógeno radicular do meloeiro na região Nordeste, onde causa a doença denominada colapso. Como não existem informações sobre os níveis populacionais de ascósporos de M. cannonballus em solos brasileiros, realizou-se este trabalho com o objetivo de comparar as densidades de ascósporos em amostras solo de 15 áreas não cultivadas de Caatinga e 15 áreas produtoras de melão do Rio Grande do Norte e do Ceará. Em todos os solos analisados foram detectados ascósporos de M. cannonballus, sendo que as populações nas áreas não cultivadas variaram de 0,18 a 18,30 ascósporos.g-1 de solo e nas áreas cultivadas com meloeiro de 0,50 a 26,04 ascósporos.g-1 de solo. Não houve diferença significativa (P=0,05) na densidade média de ascósporos entre solos não cultivados e cultivados. Entre as áreas cultivadas, a densidade média de ascósporos foi significativamente superior nas áreas com histórico de colapso causado por M. cannonballus, comparado às áreas sem histórico da doença. Pelos resultados alcançados há indícios que M. cannonballus não foi introduzido no Brasil por materiais de propagação, mas já era habitante natural dos solos de Caatinga antes da chegada da cultura do meloeiro.
Resumo:
RESUMO Espécies de Botryosphaeriaceae são importantes patógenos em diversas plantas lenhosas e não lenhosas, causando diferentes tipos de sintomas. Espécies desta família são usualmente consideradas patógenos fracos, causando doenças apenas quando estas plantas se encontram sob algum tipo de estresse como seca, temperaturas baixas ou elevadas, deficiência nutricional e danos causados por outros patógenos ou pragas. No entanto, pouco se conhece sobre a ocorrência e diversidade de espécies de Botryosphaeriaceae em plantas nativas do bioma Caatinga, localizado no Semiárido, e sobre a presença de fungos endofíticos nessas espécies, e muito menos sobre a sua importância como patógenos. O objetivo do presente estudo foi avaliar a patogenicidade de 74 isolados representando as espécies Botryosphaeria mamane, Pseudofusicoccum adansoniae, P. stromaticum, o complexo Neofusicoccum parvum/ribis, Lasiodiplodia gonubiensis e L. theobromae, identificados pela primeira vez como endofíticos em plantas típicas do bioma Caatinga. Testes de patogenicidade conduzidos em frutos de mangueira e ramos de plantas adultas de Spondias sp., revelaram que todas as espécies de Botryosphaeriaceae desse estudo foram patogênicas, sendo L. theobromae e o complexo N. parvum/ribis as mais agressivas. Este é o primeiro relato sobre fungos endofiticos em plantas do bioma Caatinga cearense, bem como a confirmação de que estas espécies podem atuar como fonte de inóculo para espécies de frutíferas comerciais da região do Semiárido brasileiro.
Resumo:
Os objetivos deste trabalho foram caracterizar os recursos florestais da caatinga e determinar a sua contribuição na sustentabilidade em projetos de reforma agrária localizados na região oeste do Estado do Rio Grande do Norte. Foi realizado um levantamento florístico, no qual se constatou que as espécies mais bem distribuídas pelas unidades amostrais foram as de caráter pioneiro, indicando que essas matas já foram exploradas anteriormente à ocupação dos assentados. O estrato florestal mais comum foi o arbustivo-arbóreo fechado, correspondendo a 75% da parcelas amostradas. Os assentamentos com presença de cobertura florestal do tipo arbustivo-arbórea aberta apresentaram baixa densidade, associada à baixa diversidade florística e à forte tendência à homogeneização, o que as enquadra como prioritárias em um processo de conservação e, ou, enriquecimento da flora. Devido à baixa rentabilidade da exploração dos recursos florestais da caatinga, essa atividade deveria servir apenas como complemento de renda dos assentados, já que outras atividades apresentam maiores retornos econômicos. Entretanto, ela possui grande importância no contexto social, sendo fundamental para a sustentabilidade dos assentamentos estudados.