965 resultados para Ca(2 )-Calmodulin Dependent Protein Kinase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Even though the involvement of intracellular Ca(2+) (Ca(i)(2+)) in hematopoiesis has been previously demonstrated, the relationship between Ca(i)(2+) signaling and cytokine-induced intracellular pathways remains poorly understood. Herein, the molecular mechanisms integrating Ca(2+) signaling with the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in primary murine and human hematopoietic stem/progenitor cells stimulated by IL-3 and GM-CSF were studied. Our results demonstrated that IL-3 and GM-CSF stimulation induced increased inositol 1,4,5-trisphosphate (IP(3)) levels and Ca(i)(2+) release in murine and human hematopoietic stem/ progenitor cells. In addition, Ca(i)(2+) signaling inhibitors, such as inositol 1,4,5-trisphosphate receptor antagonist (2-APB), PKC inhibitor (GF109203), and CaMKII inhibitor (KN-62), blocked phosphorylation of MEK activated by IL-3 and GM-CSF, suggesting the participation of Ca(2+)-dependent kinases in MEK activation. In addition, we identify phospholipase C gamma 2 (PLC gamma 2) as a PLC gamma responsible for the induction of Ca(2+) release by IL-3 and GM-CSF in hematopoietic stem/progenitor cells. Furthermore, the PLCg inhibitor U73122 significantly reduced the numbers of granulocyte-macrophage colony-forming units after cytokine stimulation. Similar results were obtained in both murine and human hematopoietic stem/progenitor cells. Taken together, these data indicate a role for PLC gamma 2 and Ca(2+) signaling through the modulation of MEK in both murine and human hematopoietic stem/ progenitor cells. J. Cell. Physiol. 226: 1780-1792, 2011. (C) 2010 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Tax protein of the human T-cell leukemia virus type 1 (HTLV-1) has been implicated in human T-cell immortalization. The primary function of Tax is to transcriptionally activate the HTLV-1 promoter, but Tax is also known to stimulate expression of cellular genes. It has been reported to associate with several transcription factors, as well as proteins not involved in transcription. To better characterize potential cellular targets of Tax present in infected cells, a Saccharomyces cerevisiae two-hybrid screening was performed with a cDNA library constructed from the HTLV-1-infected MT2 cell line. From this study, we found 158 positive clones representing seven different cDNAs. We focused our attention on the cDNA encoding the transcription factor CREB-2. CREB-2 is an unconventional member of the ATF/CREB family in that it lacks a protein kinase A (PKA) phosphorylation site and has been reported to negatively regulate transcription from the cyclic AMP response element of the human enkephalin promoter. In this study, we demonstrate that CREB-2 cooperates with Tax to enhance viral transcription and that its basic-leucine zipper C-terminal domain is required for both in vitro and in vivo interactions with Tax. Our results confirm that the activation of the HTLV-1 promoter through Tax and factors of the ATF/CREB family is PKA independent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclooxygenase-2 (COX-2), a key enzyme in prostaglandin synthesis, is highly expressed during inflammation and cellular transformation and promotes tumor progression and angiogenesis. We have previously demonstrated that endothelial cell COX-2 is required for integrin alphaVbeta3-dependent activation of Rac-1 and Cdc-42 and for endothelial cell spreading, migration, and angiogenesis (Dormond, O., Foletti, A., Paroz, C., and Ruegg, C. (2001) Nat. Med. 7, 1041-1047; Dormond, O., Bezzi, M., Mariotti, A., and Ruegg, C. (2002) J. Biol. Chem. 277, 45838-45846). In this study, we addressed the question of whether integrin-mediated cell adhesion may regulate COX-2 expression in endothelial cells. We report that cell detachment from the substrate caused rapid degradation of COX-2 protein in human umbilical vein endothelial cells (HUVEC) independent of serum stimulation. This effect was prevented by broad inhibition of cellular proteinases and by neutralizing lysosomal activity but not by inhibiting the proteasome. HUVEC adhesion to laminin, collagen I, fibronectin, or vitronectin induced rapid COX-2 protein expression with peak levels reached within 2 h and increased COX-2-dependent prostaglandin E2 production. In contrast, nonspecific adhesion to poly-L-lysine was ineffective in inducing COX-2 expression. Furthermore, the addition of matrix proteins in solution promoted COX-2 protein expression in suspended or poly-L-lysine-attached HUVEC. Adhesion-induced COX-2 expression was strongly suppressed by pharmacological inhibition of c-Src, phosphatidylinositol 3-kinase, p38, extracellular-regulated kinase 1/2, and, to a lesser extent, protein kinase C and by the inhibition of mRNA or protein synthesis. In conclusion, this work demonstrates that integrin-mediated cell adhesion and soluble integrin ligands contribute to maintaining COX-2 steady-state levels in endothelial cells by the combined prevention of lysosomal-dependent degradation and the stimulation of mRNA synthesis involving multiple signaling pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Substantial evidence supports a role for myocyte enhancer factor 2 (MEF2)-mediated transcription in neuronal survival, differentiation and synaptic function. In developing neurons, it has been shown that MEF2-dependent transcription is regulated by neurotrophins. Despite these observations, little is known about the cellular mechanisms by which neurotrophins activate MEF2 transcriptional activity. In this study, we examined the role of salt-inducible kinase 1 (SIK1), a member of the AMP-activated protein kinase (AMPK) family, in the regulation of MEF2-mediated transcription by the neurotrophin brain-derived neurotrophic factor (BDNF). We show that BDNF increases the expression of SIK1 in primary cultures of rat cortical neurons through the extracellular signal-regulated kinase 1/2 (ERK1/2)-signaling pathway. In addition to inducing SIK1 expression, BDNF triggers the phosphorylation of SIK1 at Thr182 and its translocation from the cytoplasm to the nucleus of cortical neurons. The effects of BDNF on the expression, phosphorylation and, translocation of SIK1 are followed by the phosphorylation and nuclear export of histone deacetylase 5 (HDAC5). Blockade of SIK activity with a low concentration of staurosporine abolished BDNF-induced phosphorylation and nuclear export of HDAC5 in cortical neurons. Importantly, stimulation of HDAC5 phosphorylation and nuclear export by BDNF is accompanied by the activation of MEF2-mediated transcription, an effect that is suppressed by staurosporine. Consistent with these data, BDNF induces the expression of the MEF2 target genes Arc and Nur77, in a staurosporine-sensitive manner. In further support of the role of SIK1 in the regulation of MEF2-dependent transcription by BDNF, we found that expression of wild-type SIK1 or S577A SIK1, a mutated form of SIK1 which is retained in the nucleus of transfected cells, is sufficient to enhance MEF2 transcriptional activity in cortical neurons. Together, these data identify a previously unrecognized mechanism by which SIK1 mediates the activation of MEF2-dependent transcription by BDNF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the peripheral sensory nervous system the neuronal expression of voltage-gated sodium channels (Navs) is very important for the transmission of nociceptive information since they give rise to the upstroke of the action potential (AP). Navs are composed of nine different isoforms with distinct biophysical properties. Studying the mutations associated with the increase or absence of pain sensitivity in humans, as well as other expression studies, have highlighted Nav1.7, Nav1.8, and Nav1.9 as being the most important contributors to the control of nociceptive neuronal electrogenesis. Modulating their expression and/or function can impact the shape of the AP and consequently modify nociceptive transmission, a process that is observed in persistent pain conditions. Post-translational modification (PTM) of Navs is a well-known process that modifies their expression and function. In chronic pain syndromes, the release of inflammatory molecules into the direct environment of dorsal root ganglia (DRG) sensory neurons leads to an abnormal activation of enzymes that induce Navs PTM. The addition of small molecules, i.e., peptides, phosphoryl groups, ubiquitin moieties and/or carbohydrates, can modify the function of Navs in two different ways: via direct physical interference with Nav gating, or via the control of Nav trafficking. Both mechanisms have a profound impact on neuronal excitability. In this review we will discuss the role of Protein Kinase A, B, and C, Mitogen Activated Protein Kinases and Ca++/Calmodulin-dependent Kinase II in peripheral chronic pain syndromes. We will also discuss more recent findings that the ubiquitination of Nav1.7 by Nedd4-2 and the effect of methylglyoxal on Nav1.8 are also implicated in the development of experimental neuropathic pain. We will address the potential roles of other PTMs in chronic pain and highlight the need for further investigation of PTMs of Navs in order to develop new pharmacological tools to alleviate pain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Angiotensin II (ANG II), the main effector of the renin-angiotensin system, is implicated in endothelial permeability, recruitment and activation of the immune cells, and also vascular remodeling through induction of inflammatory genes. Matrix metalloproteinases (MMPs) are considered to be important inflammatory factors. Elucidation of ANG II signaling pathways and of possible cross-talks between their components is essential for the development of efficient inhibitory medications. The current study investigates the inflammatory signaling pathways activated by ANG II in cultures of human monocytic U-937 cells, and the effects of specific pharmacological inhibitors of signaling intermediates on MMP-9 gene (MMP-9) expression and activity. MMP-9 expression was determined by real-time PCR and supernatants were analyzed for MMP-9 activity by ELISA and zymography methods. A multi-target ELISA kit was employed to evaluate IκB, NF-κB, JNK, p38, and STAT3 activation following treatments. Stimulation with ANG II (100 nM) significantly increased MMP-9 expression and activity, and also activated NF-κB, JNK, and p38 by 3.8-, 2.8- and 2.2-fold, respectively (P < 0.01). ANG II-induced MMP-9 expression was significantly reduced by 75 and 67%, respectively, by co-incubation of the cells with a selective inhibitor of protein kinase C (GF109203X, 5 µM) or of rho kinase (Y-27632, 15 µM), but not with inhibitors of phosphoinositide 3-kinase (wortmannin, 200 nM), tyrosine kinases (genistein, 100 µM) or of reactive oxygen species (α-tocopherol, 100 µM). Thus, protein kinase C and Rho kinase are important components of the inflammatory signaling pathways activated by ANG II to increase MMP-9 expression in monocytic cells. Both signaling molecules may constitute potential targets for effective management of inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of the second messengers calcium (Ca(2+)) and diacylglycerol (DAG) in platelet signal transduction was established more than 30 years ago. Whereas protein kinase C (PKC) family members were discovered as the targets of DAG, little is known about the molecular identity of the main Ca(2+) sensor(s). We here identify Ca(2+) and DAG-regulated guanine nucleotide exchange factor I (CalDAG-GEFI) as a critical molecule in Ca(2+)-dependent platelet activation. CalDAG-GEFI, through activation of the small GTPase Rap1, directly triggers integrin activation and extracellular signal-regulated kinase-dependent thromboxane A(2) (TxA(2)) release. CalDAG-GEFI-dependent TxA(2) generation provides crucial feedback for PKC activation and granule release, particularly at threshold agonist concentrations. PKC/P2Y12 signaling in turn mediates a second wave of Rap1 activation, necessary for sustained platelet activation and thrombus stabilization. Our results lead to a revised model for platelet activation that establishes one molecule, CalDAG-GEFI, at the nexus of Ca(2+)-induced integrin activation, TxA(2) generation, and granule release. The preferential activation of CalDAG-GEFI over PKC downstream of phospholipase C activation, and the different kinetics of CalDAG-GEFI- and PKC/P2Y12-mediated Rap1 activation demonstrate an unexpected complexity to the platelet activation process, and they challenge the current model that DAG/PKC-dependent signaling events are crucial for the initiation of platelet adhesion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The small G protein Ras has been implicated in hypertrophy of cardiac myocytes. We therefore examined the activation (GTP loading) of Ras by the following hypertrophic agonists: phorbol 12-myristate 13-acetate (PMA), endothelin-1 (ET-1), and phenylephrine (PE). All three increased Ras.GTP loading by 10-15-fold (maximal in 1-2 min), as did bradykinin. Other G protein-coupled receptor agonists (e.g. angiotensin II, carbachol, isoproterenol) were less effective. Activation of Ras by PMA, ET-1, or PE was reduced by inhibition of protein kinase C (PKC), and that induced by ET-1 or PE was partly sensitive to pertussis toxin. 8-(4-Chlorophenylthio)-cAMP (CPT-cAMP) did not inhibit Ras.GTP loading by PMA, ET-1, or PE. The association of Ras with c-Raf protein was increased by PMA, ET-1, or PE, and this was inhibited by CPT-cAMP. However, only PMA and ET-1 increased Ras-associated mitogen-activated protein kinase kinase 1-activating activity, and this was decreased by PKC inhibition, pertussis toxin, and CPT-cAMP. PMA caused the rapid appearance of phosphorylated (activated) extracellular signal-regulated kinase in the nucleus, which was inhibited by a microinjected neutralizing anti-Ras antibody. We conclude that PKC- and Gi-dependent mechanisms mediate the activation of Ras in myocytes and that Ras activation is required for stimulation of extracellular signal-regulated kinase by PMA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mu hiding resistance associated protein 2 (Mrp2) is a canalicular transporter responsible for organic anion secretion into bile. Mrp2 activity is regulated by insertion into the plasma membrane; however, the factors that control this are not understood. Calcium (Ca(2+)) signaling regulates exocytosis of vesicles in most cell types, and the type II inositol 1,4,5-triphosphate receptor (InsP(3)R2) regulates Ca(2+) release in the canalicular region of hepatocytes. However, the role of InsP(3)R2 and of Ca(2+) signals in canalicular insertion and function of Mrp2 is not known. The aim of this study was to determine the role of InsP(3)R2-mediated Ca(2+) signals in targeting Mrp2 to the canalicular membrane. Livers, isolated hepatocytes, and hepatocytes in collagen sandwich culture from wild-type (WT) and InsP(3)R2 knockout (KO) mice were used for western blots, confocal immunofluorescence, and time-lapse imaging of Ca(2+) signals and of secretion of a fluorescent organic anion. Plasma membrane insertion of green fluorescent protein (GFP)-Mrp2 expressed in HepG2 cells was monitored by total internal reflection microscopy. InsP(3)R2 was concentrated in the canalicular region of WT mice but absent in InsP(3)R2 KO livers, whereas expression and localization of InsP(3)R1 was preserved, and InsP(3)R3 was absent from both WT and KO livers. Ca(2+) signals induced by either adenosine triphosphate (ATP) or vasopressin were impaired in hepatocytes lacking InsP(3)R2. Canalicular secretion of the organic anion 5-chloromethylfluorescein diacetate (CMFDA) was reduced in KO hepatocytes, as well as in WT hepatocytes treated with 1,2-bis(o-aminophenoxy)ethane-N,N,N`,N`-tetra-acetic acid (BAPTA). Moreover, the choleretic effect of tauroursodeoxycholic acid (TUDCA) was impaired in InsP(3)R2 KO mice. Finally, ATP increased GFP-Mrp2 fluorescence in the plasma membrane of HepG2 cells, and this also was reduced by BAPTA. Conclusion: InsP(3)R2-mediated Ca(2+) signals enhance organic anion secretion into bile by targeting Mrp2 to the canalicular membrane. (HEPATOLOGY 2010;52:327-337)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antigen-presenting cells (APCs) control T-cell responses by multiple mechanisms, including the expression of co-stimulatory molecules and the production of cytokines and other mediators that control T-cell proliferation, survival and differentiation. Here, we demonstrate that soluble factor(s) produced by Toll-like receptor (TLR)-activated APCs suppress activation-induced cell death (AICD). This effect was observed in non-stimulated APCs, but it was significantly increased after lipopolysaccharide (LPS) treatment. Using different KO mice, we found that the LPS-induced protective factor is dependent on TLR4/MyD88. We identified the protective factor as prostaglandin E-2(PGE(2)) and showed that both APC-derived supernatants and PGE(2) prevented CD95L upregulation in T cells in response to TCR/CD3 stimulation, thereby avoiding both AICD and activated T cell killing of target macrophages. The PGE(2) receptors, EP2 and EP4, appear to be involved since pharmacological stimulation of these receptors mimics the protective effect on T cells and their respective antagonists interfere with the protection induced by either APCs derived or synthetic PGE(2). Finally, the engagement of EP2 and EP4 synergistically activates protein kinase A (PKA) and exchange protein directly activated by cAMP pathways to prevent AICD. Taken together, these results indicate that APCs can regulate T-cell levels of CD95L by releasing PGE2 in response to LPS through a TLR4/MyD88-dependent pathway, with consequences for both T cell and their own survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although glucocorticoids are widely used as antiinflammatory agents in clinical therapies, they may cause serious side effects that include insulin resistance and hyperinsulinemia. To study the potential functional adaptations of the islet of Langerhans to in vivo glucocorticoid treatment, adult Wistar rats received dexamethasone (DEX) for 5 consecutive days, whereas controls (CTL) received only saline. The analysis of insulin release in freshly isolated islets showed an enhanced secretion in response to glucose in DEX-treated rats. The study of Ca(2+) signals by fluorescence microscopy also demonstrated a higher response to glucose in islets from DEX-treated animals. However, no differences in Ca(2+) signals were found between both groups with tolbutamide or KCl, indicating that the alterations were probably related to metabolism. Thus, mitochondrial function was explored by monitoring oxidation of nicotinamide dinucleotide phosphate autofluorescence and mitochondrial membrane potential. Both parameters revealed a higher response to glucose in islets from DEX-treated rats. The mRNA and protein content of glucose transporter-2, glucokinase, and pyruvate kinase was similar in both groups, indicating that changes in these proteins were probably not involved in the increased mitochondrial function. Additionally, we explored the status of Ca(2+)-dependent signaling kinases. Unlike calmodulin kinase II, we found an augmented phosphorylation level of protein kinase C alpha as well as an increased response of the phospholipase C/inositol 1,4,5-triphosphate pathway in DEX-treated rats. Finally, an increased number of docked secretory granules were observed in the beta-cells of DEX animals using transmission electron microscopy. Thus, these results demonstrate that islets from glucocorticoid-treated rats develop several adaptations that lead to an enhanced stimulus-secretion coupling and secretory capacity. (Endocrinology 151: 85-95, 2010)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neurohypophyseal hormone arginine vasopressin (AVP) is a classic mitogen in many cells. In K-Ras-dependent mouse Y1 adrenocortical malignant cells, AVP elicits antagonistic responses such as the activation of the PKC and the ERK1/2 mitogenic pathways to down-regulate cyclin D1 gene expression, which induces senescence-associated beta-galactosidase (SA-beta Gal) and leads to cell cycle arrest. Here, we report that in the metabolic background of Y1 cells, PKC activation either by AVP or by PMA inhibits the PI3K/Akt pathway and stabilises the p27(Kip1) protein even in the presence of the mitogen fibroblast growth factor 2 (FGF2). These results suggest that p27(Kip1) is a critical signalling node in the mechanisms underlying the survival of the Y1 cells. In Y1 cells that transiently express wild-type p27(Kip1), AVP caused a severe reduction in cell survival, as shown by clonogenic assays. However, AVP promoted the survival of Y1 cells transiently expressing mutant p27-S10A or mutant p27-T187A, which cannot be phosphorylated at Ser10 and Thr187, respectively. In addition, PKC activation by PMA mimics the toxic effect caused by AVP in Y1 cells, and inhibition of PKC completely abolishes the effects caused by both PMA and AVP in clonogenic assays. The vulnerability of Y1 cells during PKC activation is a phenotype conditioned upon K-ras oncogene amplification because K-Ras down-regulation with an inducible form of the dominant-negative mutant H-RasN17 has resulted in Y1 cells that are resistant to AVP`s deleterious effects. These data show that the survival destabilisation of K-Ras-dependent Y1 malignant cells by AVP requires large quantities of the p27(Kip1) protein as well as phosphorylation of the p27(Kip1) protein at both Ser10 and Thr187. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The secreted cochaperone STI1 triggers activation of protein kinase A (PKA) and ERK1/2 signaling by interacting with the cellular prion (PrPC) at the cell surface, resulting in neuroprotection and increased neuritogenesis. Here, we investigated whether STI1 triggers PrPC trafficking and tested whether this process controls PrPC-dependent signaling. We found that STI1, but not a STI1 mutant unable to bind PrPC, induced PrPC endocytosis. STI1-induced signaling did not occur in cells devoid of endogenous PrPC; however, heterologous expression of PrPC reconstituted both PKA and ERK1/2 activation. In contrast, a PrPC mutant lacking endocytic activity was unable to promote ERK1/2 activation induced by STI1, whereas it reconstituted PKA activity in the same condition, suggesting a key role of endocytosis in the former process. The activation of ERK1/2 by STI1 was transient and appeared to depend on the interaction of the two proteins at the cell surface or shortly after internalization. Moreover, inhibition of dynamin activity by expression of a dominant-negative mutant caused the accumulation and colocalization of these proteins at the plasma membrane, suggesting that both proteins use a dynamin-dependent internalization pathway. These results show that PrPC endocytosis is a necessary step to modulate STI1-dependent ERK1/2 signaling involved in neuritogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that glucocorticoids induce peripheral insulin resistance in rodents and humans. Here, we investigated the structural and ultrastructural modifications, as well as the proteins involved in beta-cell function and proliferation, in islets from insulin-resistant rats. Adult male Wistar rats were made insulin resistant by daily administration of dexamethasone (DEX; 1mg/kg, i.p.) for five consecutive days, whilst control (CTL) rats received saline alone. Structure analyses showed a marked hypertrophy of DEX islets with an increase of 1.7-fold in islet mass and of 1.6-fold in islet density compared with CTL islets (P < 0.05). Ultrastructural evaluation of islets revealed an increased amount of secreting organelles, such as endoplasmic reticulum and Golgi apparatus in DEX islets. Mitotic figures were observed in DEX islets at structural and ultrastructural levels. Beta-cell proliferation, evaluated at the immunohistochemical level using anti-PCNA (proliferating cell nuclear antigen), showed an increase in pancreatic beta-cell proliferation of 6.4-fold in DEX islets compared with CTL islets (P < 0.0001). Increases in insulin receptor substrate-2 (IRS-2), phosphorylated-serine-threonine kinase AKT (p-AKT), cyclin D(2) and a decrease in retinoblastoma protein (pRb) levels were observed in DEX islets compared with CTL islets (P < 0.05). Therefore, during the development of insulin resistance, the endocrine pancreas adapts itself increasing beta-cell mass and proliferation, resulting in an amelioration of the functions. The potential mechanisms that underlie these events involve the activation of the IRS-2/AKT pathway and activation of the cell cycle, mediated by cyclin D(2). These adaptations permit the maintenance of glycaemia at near-physiological ranges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flavopiridol has been shown to potently inhibit CDK1 and 2 (cyclin-dependent kinases 1 and 2) and most recently it has been found that it also inhibits CDK9. The complex CDK9-cyclin T1 controls the elongation phase of transcription by RNA polymerase II. The present work describes a molecular model for the binary complex CDK9-flavopiridol. This structural model indicates that the inhibitor strongly binds to the ATP-binding pocket of CDK9 and the structural comparison of the complex CDK2-flavopiridol correlates the structural differences with differences in inhibition of these CDKs by flavopiridol. This structure opens the possibility of testing new inhibitor families, in addition to new substituents for the already known leading structures such as flavones and adenine derivatives. © 2002 Elsevier Science (USA). All rights reserved.