869 resultados para CVD diamond films
Resumo:
The article looks at three antifascist films from the 1980s by the East German film company DEFA: Jürgen Brauer's Pugowitza (1981), Egon Schlegel's Die Schüsse der Arche Noah (1983), and Helmut Dziuba's Jan auf der Zille (1986), which during this final decade of the East German state re-examine an ideologically seminal constellation of the GDR's official antifascism – the relationship between antifascist father and son. Linking generational and political succession, the father-son relationship helped to legitimise the GDR as a state in which the young continued the antifascist fight of the old communists against the Nazi dictatorship. From the 1950s on, DEFA films contributed to the visualisation of this relationship, codifying it not only as heroic but also as ‘natural’: the assumed innocence of the communist son was meant to naturalise the father's antifascist/communist cause. The 1980s saw this naturalised political succession questioned. By re-telling the canonised father-son story, the three films visualise the generational antifascist contract as flawed. Re-deploying the son's assumed innocence in a critique of the father, they explore new endings to the antifascist story and revive the discussion of categories like ‘victim’ and ‘perpetrator’.// Der Aufsatz untersucht drei antifaschistische Filme der ostdeutschen Filmgesellschaft DEFA aus den 1980er Jahren: Jürgen Brauers Pugowitza (1981), Egon Schlegels Die Schüsse der Arche Noah (1983) und Helmut Dziubas Jan auf der Zille (1986). Alle drei Filme wurden im letzten Jahrzehnt der DDR gedreht und greifen eine ideologisch tragende Konstellation des offiziellen DDR-Antifaschismus auf – die Beziehung zwischen antifaschistischem Vater und Sohn. In der Vater-Sohn-Beziehung verband sich Generationenabfolge mit politischer Nachkommenschaft, eine Verbindung, die half, die DDR als einen Staat zu legitimieren, in dem die Jungen den antifaschistischen Kampf der alten Kommunisten gegen die Nazi-Diktatur weiterführten. Seit den 1950er Jahren beteiligte sich die DEFA an der Visuali-sierung dieser Beziehung und kodifizierte sie nicht nur als heldenhaft, sondern auch als ‘natürlich’: die behauptete Unschuld der kommunistschen Söhne diente dazu, den antifaschistisch-kommunistischen Kampf der Väter zu naturalisieren. Die solcher Art politisch interpretierte Generationenabfolge verlor ihre Natürlichkeit, als sie in den 1980er Jahren kritisch befragt wurde. Im nochmaligen Erzählen der kanonisierten Vater-Sohn-Geschichte wird die Brüchigkeit des antifaschistischen Gesellschaftsvertrags in allen drei Filmen sichtbar. Die vermeintliche Unschuld der Söhne wird nun zu einer Kritik der Väter genutzt, wobei die Filme ein neues Ende für die antifaschistische Geschichte erkunden und die Debatte über Kategorien wie ‘Opfer’ und ‘Täter’ wieder aufnehmen.
Resumo:
The development of versatile bioactive surfaces able to emulate in vivo conditions is of enormous importance to the future of cell and tissue therapy. Tuning cell behaviour on two-dimensional surfaces so that the cells perform as if they were in a natural three-dimensional tissue represents a significant challenge, but one that must be met if the early promise of cell and tissue therapy is to be fully realised. Due to the inherent complexities involved in the manufacture of biomimetic three-dimensional substrates, the scaling up of engineered tissue-based therapies may be simpler if based upon proven two-dimensional culture systems. In this work, we developed new coating materials composed of the self-assembling peptide amphiphiles (PAs) C16G3RGD (RGD) and C16G3RGDS (RGDS) shown to control cell adhesion and tissue architecture while avoiding the use of serum. When mixed with the C16ETTES diluent PA at 13 : 87 (mol mol-1) ratio at 1.25 times 10-3 M, the bioactive {PAs} were shown to support optimal adhesion, maximal proliferation, and prolonged viability of human corneal stromal fibroblasts ({hCSFs)}, while improving the cell phenotype. These {PAs} also provided stable adhesive coatings on highly-hydrophobic surfaces composed of striated polytetrafluoroethylene ({PTFE)}, significantly enhancing proliferation of aligned cells and increasing the complexity of the produced tissue. The thickness and structure of this highly-organised tissue were similar to those observed in vivo, comprising aligned newly-deposited extracellular matrix. As such, the developed coatings can constitute a versatile biomaterial for applications in cell biology, tissue engineering, and regenerative medicine requiring serum-free conditions.
Resumo:
In polar oceans, seawater freezes to form a layer of sea ice of several metres thickness that can cover up to 8% of the Earth’s surface. The modelled sea ice cover state is described by thickness and orientational distribution of interlocking, anisotropic diamond-shaped ice floes delineated by slip lines, as supported by observation. The purpose of this study is to develop a set of equations describing the mean-field sea ice stresses that result from interactions between the ice floes and the evolution of the ice floe orientation, which are simple enough to be incorporated into a climate model. The sea ice stress caused by a deformation of the ice cover is determined by employing an existing kinematic model of ice floe motion, which enables us to calculate the forces acting on the ice floes due to crushing into and sliding past each other, and then by averaging over all possible floe orientations. We describe the orientational floe distribution with a structure tensor and propose an evolution equation for this tensor that accounts for rigid body rotation of the floes, their apparent re-orientation due to new slip line formation, and change of shape of the floes due to freezing and melting. The form of the evolution equation proposed is motivated by laboratory observations of sea ice failure under controlled conditions. Finally, we present simulations of the evolution of sea ice stress and floe orientation for several imposed flow types. Although evidence to test the simulations against is lacking, the simulations seem physically reasonable.
Resumo:
Quasi-uniform grids of the sphere have become popular recently since they avoid parallel scaling bottle- necks associated with the poles of latitude–longitude grids. However quasi-uniform grids of the sphere are often non- orthogonal. A version of the C-grid for arbitrary non- orthogonal grids is presented which gives some of the mimetic properties of the orthogonal C-grid. Exact energy conservation is sacrificed for improved accuracy and the re- sulting scheme numerically conserves energy and potential enstrophy well. The non-orthogonal nature means that the scheme can be used on a cubed sphere. The advantage of the cubed sphere is that it does not admit the computa- tional modes of the hexagonal or triangular C-grids. On var- ious shallow-water test cases, the non-orthogonal scheme on a cubed sphere has accuracy less than or equal to the orthog- onal scheme on an orthogonal hexagonal icosahedron. A new diamond grid is presented consisting of quasi- uniform quadrilaterals which is more nearly orthogonal than the equal-angle cubed sphere but with otherwise similar properties. It performs better than the cubed sphere in ev- ery way and should be used instead in codes which allow a flexible grid structure.
Resumo:
Self-consistent field theory (SCFT) is used to study the step edges that occur in thin films of lamellar-forming diblock copolymer, when the surfaces each have an affinity for one of the polymer components. We examine film morphologies consisting of a stack of ν continuous monolayers and one semi-infinite bilayer, the edge of which creates the step. The line tension of each step morphology is evaluated and phase diagrams are constructed showing the conditions under which the various morphologies are stable. The predicted behavior is then compared to experiment. Interestingly, our atomic force microscopy (AFM) images of terraced films reveal a distinct change in the character of the steps with increasing ν, which is qualitatively consistent with our SCFT phase diagrams. Direct quantitative comparisons are not possible because the SCFT is not yet able to probe the large polymer/air surface tensions characteristic of experiment.
Resumo:
Atomic force microscopy is used to study the ordering dynamics of symmetric diblock copolymer films. The films order to form a lamellar structure which results in a frustration when the film thickness is incommensurate with the lamellae. By probing the morphology of incommensurate films in the early ordering stages, we discover an intermediate phase of lamellae arranged perpendicular to the film surface. This morphology is accompanied by a continuous growth in amplitude of the film surface topography with a characteristic wavelength, indicative of a spinodal process. Using selfconsistent field theory, we show that the observation of perpendicular lamellae suggests an intermediate state with parallel lamellae at the substrate and perpendicular lamellae at the free surface. The calculations confirm that the intermediate state is unstable to thickness fluctuations, thereby driving the spinodal growth of surface structures.
Resumo:
Poly(acrylic acid) (PAA) and methylcellulose (MC) are able to form hydrogen-bonded interpolymer complexes (IPCs) in aqueous solutions. In this study, the complexation between PAA andMC is explored in dilute aqueous solutions under acidic conditions. The formation of stable nanoparticles is established,whose size and colloidal stability are greatly dependent on solution pH and polymers ratio in the mixture. Poly(acrylic acid) and methylcellulose are also used to prepare polymeric films by casting from aqueous solutions. It is established that uniform films can be prepared by casting from polymer mixture solutions at pH 3.4–4.5. At lower pHs (pH<3.0) the films have inhomogeneous morphology resulting from strong interpolymer complexation and precipitation of polycomplexes, whereas at higher pHs (pH 8.3) the polymers form fully immiscible blends because of the lack of interpolymer hydrogen-bonding. The PAA/MC films cast at pH 4 are shown to be non-irritant to mucosal surfaces. These films provide a platform for ocular formulation of riboflavin, a drug used for corneal crosslinking in the treatment of keratoconus. An in vitro release of riboflavin as well as an in vivo retention of the films on corneal surfaces can be controlled by adjusting PAA/MC ratio in the formulations.
Resumo:
A macroscopically oriented double diamond inverse bicontinuous cubic phase (QIID) of the lipid glycerol monooleate is reversibly converted into a gyroid phase (QIIG). The initial QIID phase is prepared in the form of a film coating the inside of a capillary, deposited under flow, which produces a sample uniaxially oriented with a ⟨110⟩ axis parallel to the symmetry axis of the sample. A transformation is induced by replacing the water within the capillary tube with a solution of poly(ethylene glycol), which draws water out of the QIID sample by osmotic stress. This converts the QIID phase into a QIIG phase with two coexisting orientations, with the ⟨100⟩ and ⟨111⟩ axes parallel to the symmetry axis, as demonstrated by small-angle X-ray scattering. The process can then be reversed, to recover the initial orientation of QIID phase. The epitaxial relation between the two oriented mesophases is consistent with topologypreserving geometric pathways that have previously been hypothesized for the transformation. Furthermore, this has implications for the production of macroscopically oriented QIIG phases, in particular with applications as nanomaterial templates.
Resumo:
Sensitive optical detection of nitroaromatic vapours with diketo-pyrrolopyrrole thin films is reported for the first time and the impact of thin film crystal structure and morphology on fluorescence quenching behaviour demonstrated.
Resumo:
Background: Dietary intervention studies suggest that flavan-3-ol intake can improve vascular function and reduce the risk of cardiovascular diseases (CVD). However, results from prospective studies failed to show a consistent beneficial effect. Objective: To investigate associations between flavan-3-ol intake and CVD risk in the Norfolk arm of the European Prospective Investigation into Cancer and Nutrition (EPIC-Norfolk). Design: Data was available from 24,885 (11,252 men; 13,633 women) participants, recruited between 1993 and 1997 into the EPIC-Norfolk study. Flavan-3-ol intake was assessed using 7-day food diaries and the FLAVIOLA Flavanol Food Composition database. Missing data for plasma cholesterol and vitamin C were imputed using multiple imputation. Associations between flavan-3-ol intake and blood pressure at baseline were determined using linear regression models. Associations with CVD risk were estimated using Cox regression analyses. Results: Median intake of total flavan-3-ols was 1034 mg/d (range: 0 – 8531 mg/d) for men and 970 mg/d (0 – 6695 mg/d) for women, median intake of flavan-3-ol monomers was 233 mg/d (0 – 3248 mg/d) for men and 217 (0 – 2712 mg/d) for women. There were no consistent associations between flavan-3-ol monomer intake and baseline systolic and diastolic blood pressure (BP). After 286,147 person-years of follow up, there were 8463 cardio-vascular events and 1987 CVD related deaths; no consistent association between flavan-3-ol intake and CVD risk (HR 0.93, 95% CI:0.87; 1.00; Q1 vs Q5) or mortality was observed (HR 0.93, 95% CI: 0.84; 1.04). Conclusions: Flavan-3-ol intake in EPIC-Norfolk is not sufficient to achieve a statistically significant reduction in CVD risk.
Resumo:
The article looks at the figure of the traitor in 1950s’ West German films about World War II. It focuses on the representation of Wehrmacht soldiers who entertain relations with the Soviet enemy and are therefore seen to betray their nation. The discussion of three well-known films – 08/15, Der Arzt von Stalingrad, and Unruhige Nacht – shows these ‘traitors’ to have a highly ambivalent function: their narrative punishment is part of German post-war exculpation, yet they are also reminders of German guilt and ethical responsibility towards the ‘other’.
Resumo:
The international appeal of Hollywood films through the twentieth century has been a subject of interest to economic and film historians alike. This paper employs some of the methods of the economic historian to evaluate key arguments within the film history literature explaining the global success of American films. Through careful analysis of both existing and newly constructed data sets, the paper examines the extent to which Hollywood's foreign earnings were affected by: film production costs; the extent of global distribution networks; and also the international orientation of the films themselves. The paper finds that these factors influenced foreign earnings in quite distinct ways, and that their relative importance changed over time. The evidence presented here suggests a degree of interaction between the production and distribution arms of the major US film companies in their pursuit of foreign markets that would benefit from further archival-based investigation.
Resumo:
A macroscopically oriented inverse hexagonal phase (HII) of the lipid phytantriol in water is converted to an oriented inverse double diamond bicontinuous cubic phase (QIID). The initial HII phase is uniaxially oriented about the long axis of a capillary with the cylinders parallel to the capillary axis. The HII phase is converted by cooling to a QII D phase which is also highly oriented, where the cylindrical axis of the former phase has been converted to a ⟨110⟩ axis in the latter, as demonstrated by small-angle X-ray scattering. This epitaxial relationship allows us to discriminate between two competing proposed geometric pathways to convert HII to QIID. Our findings also suggest a new route to highly oriented cubic phase coatings, with applications as nanomaterial templates.
Resumo:
Cardiovascular diseases (CVD) are the leading cause of mortality and morbidity worldwide. One of the key dietary recommendations for CVD prevention is reduction of saturated fat intake. Yet despite milk and dairy foods contributing on average 27 % of saturated fat intake in the UK diet, evidence from prospective cohort studies does not support a detrimental effect of milk and dairy foods on risk of CVD. This paper provides a brief overview of the role of milk and dairy products in the diets of UK adults, and will summarise the evidence in relation to the effects of milk and dairy consumption on CVD risk factors and mortality. The majority of prospective studies and meta-analyses examining the relationship between milk and dairy product consumption and risk of CVD show that milk and dairy products, excluding butter, are not associated with detrimental effects on CVD mortality or risk biomarkers, that include serum LDL cholesterol. In addition, there is increasing evidence that milk and dairy products are associated with lower blood pressure and arterial stiffness. These apparent benefits of milk and dairy foods have been attributed to their unique nutritional composition, and suggest that the elimination of milk and dairy may not be the optimum strategy for CVD risk reduction.
Resumo:
Mesoporous metal structures featuring a bicontinuous cubic morphology have a wide range of potential applications and novel opto-electronic properties, often orientation-dependent. We describe the production of nanostructured metal films 1–2 microns thick featuring 3D-periodic ‘single diamond’ morphology that show high out-of-plane alignment, with the (111) plane oriented parallel to the substrate. These are produced by electrodeposition of platinum through a lipid cubic phase (QII) template. Further investigation into the mechanism for the orientation revealed the surprising result that the QII template, which is tens of microns thick, is polydomain with no overall orientation. When thicker platinum films are grown, they also show increased orientational disorder. These results suggest that polydomain QII samples display a region of uniaxial orientation at the lipid/substrate interface up to approximately 2.8 ± 0.3 μm away from the solid surface. Our approach gives previously unavailable information on the arrangement of cubic phases at solid interfaces, which is important for many applications of QII phases. Most significantly, we have produced a previously unreported class of oriented nanomaterial, with potential applications including metamaterials and lithographic masks.