997 resultados para CPW-fed antenna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the fleece production of Angora wether goats provided with energy, to maintain liveweight, and polymer-encapsulated methionine while they were fed on poor quality roughage rations in early summer. Forty goats (mean fleece-free liveweight 28.5 kg) were randomly allotted to 5 treatments and housed individually for 12 weeks. The treatments were: control, fed to lose 5 kg liveweight; M, fed to maintain liveweight; and 3 maintenance rations with either 0.5, 1 or 2 g day-1 of polymer-encapsulated methionine. The basal ration was oaten chaff (56.8% digestible dry matter) and all maintenance- fed goats received a supplement of 150 g day- 1 gristed barley. Goats required an estimated 267 kJ ME kg-0.75 day-1 to maintain liveweight. Goats fed the control diet grew less mohair (P<0.05) with reduced mean fibre diameter (P< 0.05) than maintenance-fed goats (4.9 g day-1, 30.0 pm compared with 5.8 g day-1, 31.9 pm). For maintenance-fed animals, the addition of 1 g day- methionine (0.15% of dry matter intake) increased mohair growth by 0.8g day-1 (P<0.075). Feeding barley to prevent liveweight loss and feeding polymer-encapsulated methionine at maintenance is unlikely to result in economic responses in mohair production of goats grazing low quality summer pastures

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Hepatic insulin resistance is a major risk factor for the development of type 2 diabetes and is associated with the accumulation of lipids, including diacylglycerol (DAG), triacylglycerols (TAG) and ceramide. There is evidence that enzymes involved in ceramide or sphingolipid metabolism may have a role in regulating concentrations of glycerolipids such as DAG and TAG. Here we have investigated the role of sphingosine kinase (SphK) in regulating hepatic lipid levels. We show that mice on a high-fat high-sucrose diet (HFHS) displayed glucose intolerance, elevated liver TAG and DAG, and a reduction in total hepatic SphK activity. Reduced SphK activity correlated with downregulation of SphK1, but not SphK2 expression, and was not associated with altered ceramide levels. The role of SphK1 was further investigated by overexpressing this isoform in the liver of mice in vivo. On a low-fat diet (LFD) mice overexpressing liver SphK1, displayed reduced hepatic TAG synthesis and total TAG levels, but with no change to DAG or ceramide. These mice also exhibited no change in gluconeogenesis, glycogenolysis or glucose tolerance. Similarly, overexpression of SphK1 had no effect on the pattern of endogenous glucose production determined during a glucose tolerance test. Under HFHS conditions, normalization of liver SphK activity to levels observed in LFD controls did not alter hepatic TAG concentrations. Furthermore, DAG, ceramide and glucose tolerance were also unaffected. In conclusion, our data suggest that SphK1 plays an important role in regulating TAG metabolism under LFD conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RATIONALE: Defects in muscle glucose metabolism are linked to type 2 diabetes. Mechanistic studies examining these defects rely on the use of high fat-fed rodent models and typically involve the determination of muscle glucose uptake under insulin-stimulated conditions. While insightful, they do not necessarily reflect the physiology of the postprandial state. In addition, most studies do not examine aspects of glucose metabolism beyond the uptake process. Here we present an approach to study rodent muscle glucose and intermediary metabolism under the dynamic and physiologically relevant setting of the oral glucose tolerance test (OGTT). METHODS AND RESULTS: In vivo muscle glucose and intermediary metabolism was investigated following oral administration of [U-(13)C] glucose. Quadriceps muscles were collected 15 and 60 min after glucose administration and metabolite flux profiling was determined by measuring (13)C mass isotopomers in glycolytic and tricarboxylic acid (TCA) cycle intermediates via gas chromatography-mass spectrometry. While no dietary effects were noted in the glycolytic pathway, muscle from mice fed a high fat diet (HFD) exhibited a reduction in labelling in TCA intermediates. Interestingly, this appeared to be independent of alterations in flux through pyruvate dehydrogenase. In addition, our findings suggest that TCA cycle anaplerosis is negligible in muscle during an OGTT. CONCLUSIONS: Under the dynamic physiologically relevant conditions of the OGTT, skeletal muscle from HFD fed mice exhibits alterations in glucose metabolism at the level of the TCA cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rationale Cardiac metabolism is thought to be altered in insulin resistance and type 2 diabetes (T2D). Our understanding of the regulation of cardiac substrate metabolism and insulin sensitivity has largely been derived from ex vivo preparations which are not subject to the same metabolic regulation as in the intact heart in vivo. Studies are therefore required to examine in vivo cardiac glucose metabolism under physiologically relevant conditions. Objective To determine the temporal pattern of the development of cardiac insulin resistance and to compare with dynamic approaches to interrogate cardiac glucose and intermediary metabolism in vivo. Methods and results Studies were conducted to determine the evolution of cardiac insulin resistance in C57Bl/6 mice fed a high-fat diet (HFD) for between 1 and 16 weeks. Dynamic in vivo cardiac glucose metabolism was determined following oral administration of [U-13C] glucose. Hearts were collected after 15 and 60 min and flux profiling was determined by measuring 13C mass isotopomers in glycolytic and tricarboxylic acid (TCA) cycle intermediates. Cardiac insulin resistance, determined by euglycemic-hyperinsulinemic clamp, was evident after 3 weeks of HFD. Despite the presence of insulin resistance, in vivo cardiac glucose metabolism following oral glucose administration was not compromised in HFD mice. This contrasts our recent findings in skeletal muscle, where TCA cycle activity was reduced in mice fed a HFD. Similar to our report in muscle, glucose derived pyruvate entry into the TCA cycle in the heart was almost exclusively via pyruvate dehydrogenase, with pyruvate carboxylase mediated anaplerosis being negligible after oral glucose administration. Conclusions Under experimental conditions which closely mimic the postprandial state, the insulin resistant mouse heart retains the ability to stimulate glucose metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experiment was conducted with barramundi (Lates calcarifer) juveniles to examine the marginal efficiency of utilisation of long chain-polyunsaturated fatty acids (LC-PUFA). A series of five diets with blends of fish (anchovy) oil and poultry fat (F100:P0, F60:P40, F30:P70, F15:P85, F0:P100) were fed to 208. ±. 4.1. g fish over a 12-week period. The replacement of fish oil with poultry fat had no impact on growth performance (average final weight of 548.3. ±. 10.2. g) or feed conversion (mean = 1.14. ±. 0.02). Analysis of the whole body composition showed that the fatty acid profile reflected that of the fed diet. However it was also shown that there was a disproportional retention of some fatty acids relative to others (notably LOA, 18:2n-6 and LNA, 18:3n-3). By examining the body mass independent retention of different fatty acids with differential levels of intake of each, the marginal efficiencies of the use of these nutrients by this species were able to be determined. The differential retention of fatty acids in the meat was also examined allowing the determination of oil blending strategies to optimise meat n-3 LC-PUFA levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experiment was conducted to assess the response of juvenile barramundi (Lates calcarifer) to four diets containing either marine- or non-marine derived neutral lipid (NL) or polar lipid (PL) sources for eight weeks in a 2 × 2 factorial design. The four diets contained 8.2% added lipid composed of a 1% fish oil base with 7.2% test lipid (n - 3 NL: Fish oil, n - 3 PL: Krill oil, n - 6 NL: Soybean oil, n - 6 PL: Soybean lecithin). The results demonstrated that the different lipid sources (either n - 3 or n - 6 omega series from either NL or PL class) had significant effects on growth performance and feed utilisation with some interaction terms noted. Growth was negatively affected in the n - 6 NL fish and the feed conversion (FCR) was highest in the n - 6 PL fish. Digestibility of total lipid and some specific fatty acids (notably 18:2n - 6 and 18:3n - 3) were also negatively affected in the n - 6 PL fish. Analysis of the whole body neutral lipid fatty acid composition showed that these mirrored those of the diets and significant interaction terms were noted. However, the whole body polar lipid fatty acids appeared to be more tightly regulated in comparison. The blood plasma biochemistry and hepatic transcription of several fatty acid metabolism genes in the n - 6 PL fed and to a lesser extent in the n - 6 NL fed fish demonstrated a pattern consistent with modified metabolic function. These results support that there are potential advantages in using phospholipid-rich oils however there are clear differences in terms of their origin. Statement of relevance: Juvenile barramundi may benefit from dietary phospholipid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to determine feed intake and average weight gain and to evaluate the ruminal morphologic characteristics of Saanen kids slaughtered at 30, 45 and 60 days of age, according to a completely randomized design. Thirty-six non-castrated male Saanen kids were fed ground total ration, pelleted total ration, or extruded total ration. Feed intake and refusals were controlled daily and the animals were weighed at birth and then once a week. Newborn kids received a milk replacer and were weaned at 45 days. Immediately after slaughter, the animals were eviscerated, the entire digestive apparatus was removed from the carcass. The reticulo-rumen was separated, emptied, washed and weighed. Samples were collected from the dorsal sac, pillar area and ventral sac of the rumen, fixed for about 24h in Bouin's solution, dehydrated, embedded in Histosec and cut into 5 mu m sections. Results showed that dry matter intake (DMI) at weaning and post-weaning and weight gain were higher (P < 0.05) in animals that received the pelleted total ration. The weight of the reticulo-rumen accompanied body development and was heavier in these animals. Histologically, after weaning ruminal papillae were more developed in animals that received pelleted total ration. Length of papillae increased with increase of age. The ratio of papillary height to papillary width increased with age in the ventral sac and until weaning (P > 0.05). We conclude that the pelleting process of the total ration favored increased intake, with a 46.7% increase in weight gain and increase in rumen weight and papillae length, suggesting that best results are obtained with this processing. In general, no difference was observed between the results obtained with extruded and ground total ration, although animals fed extruded total ration showed an increase in rumen weight and papillae width. (c) 2004 Elsevier B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piracanjuba (Brycon orbignyanus) is a Brazilian migratory fast-growing omnivore, very appreciated as a sport fish, which is threatened to extinction in Southern Brazil due to stock over exploitation and dam building. Therefore, efforts have been made to raise this fish in captivity for reintroduction and aquaculture purposes. In the present study, the effects of different dietary protein and lipid concentrations on piracanjuba fingerlings growth performance, feed utilization, body composition, hepatosomatic index (HSI) and activity of the lipogenic enzymes fatty acid synthetase (FAS), glucose-6-phosphate dehydrogenase (G6PD) and malic enzyme (ME) were investigated using a 2 x 3 factorial experiment. Six casein-gelatin based diets were prepared combining two protein (30% and 32%) and three lipid concentrations (5.5%, 8.8% and 12.1%). Eleven fish, average weight 11.30 +/- 0.1 g, were held in each of 18 100-1 aquaria, supplied with recirculating freshwater. Each diet was randomly assigned to triplicate groups of fish and fed to apparent satiation, twice a day for 100 d. Piracanjuba fingerlings' daily weight gain (0.36-0.40 g), specific growth rate (1.43-1.51%), feed utilization and HSI were not influenced by dietary protein or lipid concentration. However, body composition was directly affected by dietary treatment. An increase in body fat and dry matter was observed as dietary lipid increased, for both dietary protein concentrations tested. The activity of FAS was depressed by increasing dietary fat levels but the G6PD activity did not differ among dietary treatments, although ME activity showed some regulation by dietary protein. These results indicate that an increase from 5.5% to 12.1% in the dietary lipid, at a dietary protein concentration of 30% or 32%, promotes body fat accumulation in piracanjuba fingerlings with no improvement in growth, suggesting that the lipid requirement for this species should be 5% or less, when raised for commercial purposes. However, the additional energy reserve from body fat accumulation could be desirable for piracanjuba fingerlings produced for stock enhancement. (C) 2003 Editions scientifiques et medicales Elsevier SAS and Ifremer/IRD/Inra/Cemagref. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to lack of information on the use of non-protein energy sources in diets for pacu (Piaractus mesopotamicus), a 2 x 2 x 3 factorial experiment was conducted to evaluate the performance and digestibility of 12 diets containing approximately two crude protein (CP; 220 and 250 g kg(-1)), two lipid (40 and 80 g kg(-1)) and three carbohydrate levels (410, 460 and 500 g kg(-1)). The pacu juveniles-fed diets containing 220 g kg(-1) CP did not respond (P > 0.05) to increased dietary lipid and carbohydrate levels, but the fish-fed diets containing 250 g kg(-1) CP showed a better feed conversion ratio. There were interactions in weight gain (WG), specific growth rate (SGR), crude protein intake (CPI) and feed conversion rate (FCR) dependent on dietary carbohydrate and lipid levels, showing positive effects of increasing carbohydrate levels only for fish-fed diets containing 80 g kg(-1) lipid level. However, when the diets contained 40 g kg(-1) lipid, the best energy productive value (EPV) results were obtained at 460 g kg(-1) carbohydrate. A higher usage of lipids (80 g kg(-1)) reduced CPI and was detrimental to protein [apparent digestibility coefficient (ADC)(CP)] and energy (ADC(GE)), but did not affect growth. The ADC(GE) improved proportionally as dietary carbohydrate levels increased (P < 0.05), increasing the concentration of digestible energy. In addition, the WG, CPI, ADC(GE) results showed best use of the energy from carbohydrates when dietary protein level was 250 g kg(-1) CP. The utilization of 250 g kg(-1) CP in feeds for juvenile pacu for optimal growth is suggested. Therefore, the optimum dietary lipid and carbohydrate levels depend on their combinations. It can be stated that pacu uses carbohydrates as effectively as lipids in the maximization of protein usage, as long as it is not lower than 250 g kg(-1) CP or approximately 230 g kg(-1) digestible protein.