996 resultados para CO stretching bands
Resumo:
This paper describes the development and characterisation of Ni-Co coatings to be used as anodes in water electrolysis. Chemical oxidation of the surface was performed through thermal treatment at 400ºC for 10 h. The resulting surfaces were analysed by X-ray diffraction, EDX, SEM, cyclic voltammetry and constant current electrolysis. The electrochemical oxidation occurring on bare surfaces during electrolysis promotes the formation of thick oxide layers resulting in loss of activity. In oxidised surfaces the chemical Ni-Co oxide grown during the thermal treatment prevents further oxidation thus retaining their activity towards oxygen evolution. An optimum condition for the growth of mixed oxide with high activity was found for the bath containing 50 g L-1 CoSO4.
Resumo:
The present work describes a rapid and sensitive method for the determination of carbon monoxide and carbon dioxide at low concentration levels, on line, in ethylene and hydrogen lines. These gases were separated in a column filled with Porapak Q, converted to methane and quantified by a flame ionization detector. Some modifications were made in the injection system and in the lines of the carrier gas. The detection limits of 2,6 ppbV and 4,85 ppbV for CO and CO2, respectively, were reached after modifications.
Resumo:
This thesis deals with a hardware accelerated Java virtual machine, named REALJava. The REALJava virtual machine is targeted for resource constrained embedded systems. The goal is to attain increased computational performance with reduced power consumption. While these objectives are often seen as trade-offs, in this context both of them can be attained simultaneously by using dedicated hardware. The target level of the computational performance of the REALJava virtual machine is initially set to be as fast as the currently available full custom ASIC Java processors. As a secondary goal all of the components of the virtual machine are designed so that the resulting system can be scaled to support multiple co-processor cores. The virtual machine is designed using the hardware/software co-design paradigm. The partitioning between the two domains is flexible, allowing customizations to the resulting system, for instance the floating point support can be omitted from the hardware in order to decrease the size of the co-processor core. The communication between the hardware and the software domains is encapsulated into modules. This allows the REALJava virtual machine to be easily integrated into any system, simply by redesigning the communication modules. Besides the virtual machine and the related co-processor architecture, several performance enhancing techniques are presented. These include techniques related to instruction folding, stack handling, method invocation, constant loading and control in time domain. The REALJava virtual machine is prototyped using three different FPGA platforms. The original pipeline structure is modified to suit the FPGA environment. The performance of the resulting Java virtual machine is evaluated against existing Java solutions in the embedded systems field. The results show that the goals are attained, both in terms of computational performance and power consumption. Especially the computational performance is evaluated thoroughly, and the results show that the REALJava is more than twice as fast as the fastest full custom ASIC Java processor. In addition to standard Java virtual machine benchmarks, several new Java applications are designed to both verify the results and broaden the spectrum of the tests.
Resumo:
Cp'Mn(CO)3 (Cp'=h5-C5H4-CH 3) reacts with P(C6H5)2H in THF to give Cp'(CO)2MnPPh2H (Ph = Phenyl) (1), by substitution of one CO ligand. The reaction of 1 with CH3COCl and CH3S(O)2Cl in the presence of triethylamine occurs under electrophilic substitution on the diphenylphosphan ligand to yield the acetyl- and sulfonylphosphane complexes of manganese(I) Cp'(CO)2MnPPh2COCH3 (2) and Cp'(CO)2MnPPh2S(O)2 CH3 (3). The complex stabilisation of these molecules, wich are hitherto unknown in the free state, is only accomplished by blocking the free electron pair on phosphorus by coordination. The new complexes 1, 2 and 3 were analysed by IR, ¹H-NMR and 31P-MNR spectroscopy and their similar structures are discusssed.
Resumo:
We analyse vibrational frequencies of 168 compounds with the AM1 model concerning its experimentally observed gaseous frequencies. Stretching of CH, NH, OH and CO bonds, its related bending frequencies, and the CC frame movements are the studied vibrations. The results show problems with the AM1 vibrational splittings. Often symmetric stretching frequencies, like in CH3, CH2 and NH3, appear switched with the corresponding antisymmetrical ones. Among the studied vibrations many stretchings are overestimated, while bendings oscillate around experimental values. Fluorine stretchings, NN, OO, CH, double and triples CC bonds and cyclic hydrocarbon breathing modes are always overestimated while torsions, umbrella modes and OH/SH stretching are, in average, underestimated. Graphical analysis show that compounds with the lowest molecular masses are the ones with the largest difference to the experimental values. From our results it is not possible to fit confortably the calculated frequencies by a simple linear relationship of the type, n(obs)=a*n(AM1). Better aggreement is obtained when different curves are adjusted for the stretching and bending modes, and when a complete linear function is used. Among our studies the best obtained statistical results are for CH, NH and OH. The conclusions obtained in this work will improve the AM1 calculated frequencies leading to accurate results for these properties.
Resumo:
The kinetic parameters for the CO oxidation reaction using copper/alumina-modified ceria as catalysts were determined. The catalysts with different concentrations of the metals were prepared using impregnation methods. In addition, the reduction-oxidation behaviour of the catalysts were investigated by temperature-programmed reduction. The activity results show that the mechanism for CO oxidation is bifunctional : oxygen is activated on the anionic vacancies of ceria surface, while carbon monoxide is adsorbed preferentially on the higher oxidation copper site. Therefore, the reaction occurs on the interfacial active centers. Temperatures-programmed Reduction patterns show a higher disperdion when cerium oxide is present.
Resumo:
The binuclear [Fe(CNBu t)(CO)4(HgSO4 )] adduct was obtained in the reaction of HgSO4 with [Fe(CNBu t)(CO)4] in methanol. This adduct, without a similar in the homoleptic pentacarbonyliron, was characterized by analytical and spectroscopic data. Further Mössbauer and molar conductivity studies have confirmed it's adduct nature.
Resumo:
Cadmium UPD on Au was studied by voltammetric and microgravimetric measurements. In the oxide formation/reduction potential region, a mass increasing/decreasing of 32 ng cm-2 was associated to incorporation/elimination of one oxygen per active site. The modifications promoted in the voltammetric and mass profiles by 10-5 M Cd(ClO4)2 are restricted to potentials more negative than 0.4 V. After a 120 s potential delay at 0.05 V, the positive sweep reveals an anodic peak with charge of 40 muC cm-2 and mass decrease of 22 ng cm-2, associated to Cd ads dissolution. Sulphate or chloride was added to the solution without significant influence, due to the low coverage with Cd or anions.
Resumo:
The present experiment describes the preparation, characterization of n-butyl(pyridil)cobaloxime complex and its electrochemical property. The infrared and uv-visible absorption spectra were used to characterize the complex obtained. The infrared spectrum of the compound showed characteristics bands that indicated the formation of the Co-C chemical bond formation. The electronic absorption spectrum in acetonitrile showed transition bands attributed to p-p*, metal-to-ligand charge transfer, d-d transitions and charge transfer Co-C. The electrochemical property was investigated by the pulse differential voltammetry technique. Two oxidation processes: Co(I)/Co(II) at -423 mV and Co(II)/Co(III) at 752 mV were observed.
Resumo:
Some commercial samples of vermicompost from bovine manure (humus) were characterized by thermogravimetry with respect to humidity, organic matter and ash contents, the percentages of which range from 6.55 to 5.35%, 53.01 to 69.96% and 46.44 to 66,14%, respectively. The capacity of adsorption of Cu2+, Zn2+ and Co2+ ions by these samples has been evaluated as a function of pH and time. The contents of several metal ions in the original vermicompost samples have been determined by flame atomic absorption spectrometry after digestion in a microwave oven. The high nitrogen content suggests that the earthworms used in the maturation procedure lead to an efficient degradation of organic matter. The metal retention was affected by both pH and adsorption time. The results also show that adsorption follows the order Cu2+ > Zn2+ > Co2+.
Resumo:
This paper presents a study of the interaction of small molecules with ZnO surfaces by means of theoretical methods. The AM1 semi-empirical method was used for optimizing the geometric parameters of adsorbed molecules. The optimized AM1 structures were used in the calculations of the ab initio RHF method with the 3-21G* basis set. The interaction of CO, CO2 and NH3 molecules were studied with (ZnO)22 and (ZnO)60 cluster models. We have analyzed the interaction energy, SCF orbital energies, Mulliken charges and the density of states (DOS).
Resumo:
Simultaneous oxidation/co-precipitation of an equimolar mixture of La(III) and Co(II) nitrates and La(III) nitrate and Mn(II) chloride afforded a hydroxide gel, which was converted to LaCoO3 and LaMnO3 on calcination at 600 °C. After calcination, the obtained perovskites have been characterised by X-ray diffraction (XRD), X- ray photoelectron spectroscopy (XPS), thermogravimetric analysis (DTA - TGA) and BET specific surface determination. Specific surface areas of perovskites were 12 - 60 m²/g. XRD analysis showed that LaCoO3 and LaMnO3 are simple phase perovskite - type oxides. Traces of LaOCl, in addition to the perovskite were detected in the LaMnO3. The catalytic behavior was examined in the propane and CO oxidation. The LaCoO3 catalyst was more active to CO2 than the LaMnO3 catalyst.
Resumo:
Polyhydroxyalkanoates (PHAs) are carbon and energy storage materials that are accumulated as intracellular granules in a variety of microorganisms during unbalanced growth. PHAs have drawn attention due to their properties similar to conventional plastics and complete biodegradability. They can be used for food and cosmetics packaging, and in medicine and agriculture. However, their applicability is reduced because of their high production cost compared to conventional plastics. An overview on production strategies of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) aiming at reducing the production costs is presented.
Resumo:
Award-winning
Resumo:
The development of cobalt catalysts to produce hydrogen from ethanol is the goal of this investigation. Co/Al2O3 catalysts were prepared by impregnation and characterized by atomic absorption, nitrogen adsorption, X-ray diffraction, Raman spectroscopy, temperature programmed reduction and carbon analysis. The catalysts contained Co3O4 oxide and Co3+ and Co2+ species interacting with alumina. The cobalt load affects the crystal size and the crystalline structure and higher Co loads influence the reaction mechanism, changing the selectivity of the catalysts, decreasing the amount of CO produced and avoiding the formation of products catalyzed by the support. The ethanol conversion was 50-70% with 10-<1% of CO in the hydrogen.