980 resultados para CELL STIMULATORY FACTOR
Resumo:
Initiation and progression of most colorectal cancers (CRCs) are driven by hyper-activation of the canonical Wnt/ß-catenin/TCF signaling pathway. However, a basal level of activation of this pathway is necessary for intestinal cell homeostasis; thus only CRC-specific effectors of this pathway could be exploited as potential clinical targets. PROX1 is an evolutionary conserved transcription factor with multiple roles in several tissues in embryogenesis, and increasing relevance in cancer. PROX1 is a colon cancer-specific Wnt target in the intestine, thus it might represent a therapeutic target. The role of PROX1 in promoting the transition from early to highly-dysplastic adenoma was previously described [1], Importantly, tumor metastasis is a leading cause of cancer-related mortality. Frequently, micrometastases are already present in patients at the time of diagnosis, therefore better understanding of the mechanisms regulating growth of macrometastatic lesions is important for the development of novel treatment approaches. In this study we showed that PROX1 is expressed in colon cancer stem cell and promotes the outgrowth of metastatic lesions. Firstly, we analyzed the expression of PROX1 in advanced CRCs and their metastases. We found that PROX1 over-expression is a feature of microsatellite stable tumors (~85% of microsatellite stable (MSS) CRCs), which generally have worse prognosis in comparison to microsatellite unstable CRCs. Analysis of primary CRCs and corresponding metastatic lesions showed that PROX1 expression is conserved, or increased in metastases. Further bioinformatics analysis of tumor and metastases gene expression profiles showed that PROX1 is co- expressed with stem cell and progenitor markers. Moreover, in inducible ApcmLgr5-EGFP-lres-CreERT2 model, Prox1+ cells marked a sub-population of Lgr5+ stem cells and subsequent transient amplifying cell population. Orthotopic model of CRC and lung colonization assays in mice demonstrated that PROX1 promotes tumor cell outgrowth in metastatic lesions, while it has no effect on primary tumor growth, invasion, and survival in circulation or cell extravasation. In vitro, PROX1 expressing tumor cells demonstrated strongly increased capacity to form spheroids, and increased survival and proliferation under hypoxic or nutrient-deprivation conditions. By monitoring cellular respiration under these conditions, we found that PROX1 expressing cells exhibit a better metabolic adaptation to changes in fuel source. Autophagy inhibitors, prevented growth both in vitro and in vivo of PROX1 expressing cells. Importantly, conditional inactivation of PROX1 after the establishment of metastases prevented further growth of macroscopic lesions resulting in stable disease. In summary, we identified a novel mechanism underlying the ability of metastatic colon cancer stem and progenitor cells to survive and grow in target organs through metabolic adaptation. Our results establish PROX1 as a key factor of CRC metastatic disease where it promotes survival of metastatic colon cancer stem-like cells, through their metabolic adaptation in sub-optimal microenvironments - L'initiation et la progression de la plupart des cancers colorectaux (CRC) sont entraînées par une hyper-activation de la voie métabolique Wnt/ß- caténine/TCF. Toutefois, un niveau d'activation minimal de Wnt est nécessaire pour l'homéostasie des cellules intestinales ; ainsi seuls des effecteurs spécifiques du CRC- de cette voie pourraient être exploités comme des cibles cliniques potentielles. PROX1 est un facteur de transcription évolutif conservé avec de multiples rôles dans plusieurs tissus durant l'embryogenèse et une pertinence croissante dans le cancer. PROX1 est une cible Wnt spécifique dans le cancer de l'intestin, donc il pourrait représenter une cible thérapeutique. Le rôle de PROX1 durant l'évolution de la maladie d'un stade précoce jusqu'à l'adénome hautement dysplasique a été décrit précédemment. Surtout, la métastase des tumeurs est une cause majeure de mortalité liée au cancer. Souvent, les micro-métastases sont déjà présentes chez les patients au moment du diagnostic, c'est pourquoi une meilleure compréhension des mécanismes régulant la croissance des lésions macrométastatiques est importante pour le développement de nouvelles approches thérapeutiques. Dans cette étude, nous avons prouvé que PROX1 est exprimé dans les cellules souches du cancer du côlon et favorise l'apparition de lésions métastatiques. Nous avons d'abord analysé l'expression de PROX1 dans des CRC avancés ainsi que dans leurs métastases. Nous avons constaté que la surexpression de PROX1 est une caractéristique des tumeurs stables microsatellites (~85% du MSS CRC), qui ont généralement un pronostic défavorable par rapport aux microsatellites CRC instables. L'analyse des CRC primaires et de leurs métastases liées a montré que l'expression de PROX1 est conservée, voire augmentée dans les métastases. A l'aide d'une base de données de tumeurs et métastases, nous avons observé une co- régulation de PROX1 entre cellules souches et marqueurs de progéniteurs mais pas avec des cellules différenciées. De plus, en utilisant un modèle Apcm Lgr5-EGFP-IRES-CreERT2 inductible, les cellules Prox1+ ont marqué une sous-population de cellules LGR& capable de produire une lignée. Un modèle orthotopique de cancer colorectal et des essais de colonisation du poumon chez la souris ont démontré que PROX1 favorise l'excroissance des cellules tumorales dans les lésions métastatiques, alors qu'il n'a aucun effet sur la croissance tumorale primaire, l'invasion ou une extravasation des cellules. In vitro, les cellules tumorales exprimant PROX1 ont démontré une forte augmentation de leur capacité à former des sphéroïdes, ainsi qu'une augmentation de la survie et de la prolifération dans des conditions hypoxiques ou lors de privation de nutriments. En contrôlant la respiration cellulaire dans ces conditions, nous avons constaté que les cellules exprimant PROX1 présentent une meilleure adaptation métabolique à l'évolution des sources de carburant. Des inhibiteurs de l'autophagie, suggérant une approche thérapeutique potentielle, ont tué à la fois in vitro et in vivo les cellules exprimant PROX1. Surtout, l'inactivation conditionnelle de PROX1 après l'apparition de métastases a empêché la croissance des lésions macroscopiques résultant en une maladie stable. En résumé, nous avons identifié un nouveau mécanisme mettant en évidence la capacité des cellules souches du cancer du côlon métastatique à survivre et à se développer dans les organes cibles grâce à l'adaptation métabolique. Nos résultats définissent PROX1 comme un facteur clé du cancer colorectal métastatique en favorisant la survie des cellules souches métastatiques apparentées au cancer du colon grâce à leur adaptation métabolique aux microenvironnements défavorables.
Resumo:
INTRODUCTION: Squamous-cell carcinoma of the head and neck (SCCHN) remains a challenging clinical problem, due to the persistent high rate of local and distant failures and the occurrence of secondary primaries. For locally advanced SCCHN, a combination of chemotherapy (CT), radiation or surgery is often used, but there are limitations, which may reduce compliance. Molecular targeted therapies, namely anti-EGFR treatments, are in development with the aim of improving clinical outcomes and mitigating treatment-related toxicities. AREAS COVERED: This review provides an overview of early investigational drugs that target EGFR for the treatment of SCCHN and discusses the ongoing trials in this domain. EXPERT OPINION: Targeted therapies are increasingly used in oncology, especially in SCCHN. Cetuximab has demonstrated a significant improvement in the treatment outcome, both as a curative treatment in combination with radiation therapy and as a palliative treatment in combination with CT; however, it failed to show any benefit in combination with concomitant chemoradiotherapy. Presently, there are many new agents, including monoclonal antibodies and small-molecule tyrosine kinase inhibitors, which are either currently under investigation for or which warrant further investigation for treating SCCHN. The discovery of predictive factors that help to identify patients most likely to respond to EGFR inhibitors as well as patient-customized therapies would help to improve patient outcomes in the future.
Resumo:
During the initial phases of type 1 diabetes, pancreatic islets are invaded by immune cells, exposing β-cells to proinflammatory cytokines. This unfavorable environment results in gene expression modifications leading to loss of β-cell functions. To study the contribution of microRNAs (miRNAs) in this process, we used microarray analysis to search for changes in miRNA expression in prediabetic NOD mice islets. We found that the levels of miR-29a/b/c increased in islets of NOD mice during the phases preceding diabetes manifestation and in isolated mouse and human islets exposed to proinflammatory cytokines. Overexpression of miR-29a/b/c in MIN6 and dissociated islet cells led to impairment in glucose-induced insulin secretion. Defective insulin release was associated with diminished expression of the transcription factor Onecut2, and a consequent rise of granuphilin, an inhibitor of β-cell exocytosis. Overexpression of miR-29a/b/c also promoted apoptosis by decreasing the level of the antiapoptotic protein Mcl1. Indeed, a decoy molecule selectively masking the miR-29 binding site on Mcl1 mRNA protected insulin-secreting cells from apoptosis triggered by miR-29 or cytokines. Taken together, our findings suggest that changes in the level of miR-29 family members contribute to cytokine-mediated β-cell dysfunction occurring during the initial phases of type 1 diabetes.
Resumo:
Rationale: Cystic fibrosis (CF) is characterized by progressive pulmonary inflammation that is infection-triggered. Pseudomonas aeruginosa represents a risk factor for deterioration of lung function and reduced life expectancy. Objectives: To assess T-cell cytokine/chemokine production in clinically stable children with CF and evaluate the association between T-cell subtypes and susceptibility for infection with P. aeruginosa. Methods: T-cell cytokine/chemokine profiles were measured in bronchoalveolar lavage fluid (BALF) from children with CF (n = 57; 6.1 ± 5.9 yr) and non-CF control subjects (n = 18; 5.9 ± 4.3 yr). Memory responses to Aspergillus fumigatus and P. aeruginosa were monitored. High-resolution computed tomography-based Helbich score was assessed. In a prospective observational trial the association between BALF cytokine/chemokine profiles and subsequent infection with P. aeruginosa was studied. Measurements and Main Results: Th1- (INF-γ), Th2- (IL-5, IL-13), Th17- (IL-17A), and Th17-related cytokines (IL-1β, IL-6) were significantly up-regulated in airways of patients with CF. IL-17A, IL-13, and IL-5 were significantly higher in BALF of symptomatic as compared with clinically asymptomatic patients with CF. IL-17A and IL-5 correlated with the percentage of neutrophils in BALF (r = 0.41, P < 0.05 and r = 0.46, P < 0.05, respectively). Th17- (IL-17A, IL-6, IL-1β, IL-8) and Th2-associated cytokines and chemokines (IL-5, IL-13, TARC/CCL17), but not IFN-γ levels, significantly correlated with high-resolution computed tomography changes (Helbich score; P < 0.05). P. aeruginosa- and A. fumigatus-specific T cells from patients with CF displayed significantly higher IL-5 and IL-17A mRNA expression. IL-17A and TARC/CCL17 were significantly augmented in patients that developed P. aeruginosa infection within 24 months. Conclusions: We propose a role for Th17 and Th2 T cells in chronic inflammation in lungs of patients with CF. High concentrations of these cytokines/chemokines in CF airways precede infection with P. aeruginosa.
Resumo:
Cell death is achieved by two fundamentally different mechanisms: apoptosis and necrosis. Apoptosis is dependent on caspase activation, whereas the caspase-independent necrotic signaling pathway remains largely uncharacterized. We show here that Fas kills activated primary T cells efficiently in the absence of active caspases, which results in necrotic morphological changes and late mitochondrial damage but no cytochrome c release. This Fas ligand-induced caspase-independent death is absent in T cells that are deficient in either Fas-associated death domain (FADD) or receptor-interacting protein (RIP). RIP is also required for necrotic death induced by tumor necrosis factor (TNF) and TNF-related apoptosis-inducing ligand (TRAIL). In contrast to its role in nuclear factor kappa B activation, RIP requires its own kinase activity for death signaling. Thus, Fas, TRAIL and TNF receptors can initiate cell death by two alternative pathways, one relying on caspase-8 and the other dependent on the kinase RIP.
Resumo:
Huntington's disease (HD) is a monogenic neurodegenerative disease that affects the efferent neurons of the striatum. The protracted evolution of the pathology over 15 to 20 years, after clinical onset in adulthood, underscores the potential of therapeutic tools that would aim at protecting striatal neurons. Proteins with neuroprotective effects in the adult brain have been identified, among them ciliary neurotrophic factor (CNTF), which protected striatal neurons in animal models of HD. Accordingly, we have carried out a phase I study evaluating the safety of intracerebral administration of this protein in subjects with HD, using a device formed by a semipermeable membrane encapsulating a BHK cell line engineered to synthesize CNTF. Six subjects with stage 1 or 2 HD had one capsule implanted into the right lateral ventricle; the capsule was retrieved and exchanged for a new one every 6 months, over a total period of 2 years. No sign of CNTF-induced toxicity was observed; however, depression occurred in three subjects after removal of the last capsule, which may have correlated with the lack of any future therapeutic option. All retrieved capsules were intact but contained variable numbers of surviving cells, and CNTF release was low in 13 of 24 cases. Improvements in electrophysiological results were observed, and were correlated with capsules releasing the largest amount of CNTF. This phase I study shows the safety, feasibility, and tolerability of this gene therapy procedure. Heterogeneous cell survival, however, stresses the need for improving the technique.
Resumo:
The growth of any solid tumor depends on angiogenesis. Vascular endothelial growth factor (VEGF) plays a prominent role in vesical tumor angiogenesis regulation. Previous studies have shown that the peroxisome proliferator-activated receptor gamma (PPARgamma) was involved in the angiogenesis process. Here, we report for the first time that in two different human bladder cancer cell lines, RT4 (derived from grade I tumor) and T24 (derived from grade III tumor), VEGF (mRNA and protein) is differentially up-regulated by the three PPAR isotypes. Its expression is increased by PPARalpha, beta, and gamma in RT4 cells and only by PPARbeta in T24 cells via a transcriptional activation of the VEGF promoter through an indirect mechanism. This effect is potentiated by an RXR (retinoid-X-receptor), selective retinoid LG10068 providing support for a PPAR agonist-specific action on VEGF expression. While investigating the downstream signaling pathways involved in PPAR agonist-mediated up-regulation of VEGF, we found that only the MEK inhibitor PD98059 reduced PPAR ligand-induced expression of VEGF. These data contribute to a better understanding of the mechanisms by which PPARs regulate VEGF expression. They may lead to a new therapeutic approach to human bladder cancer in which excessive angiogenesis is a negative prognostic factor.
Resumo:
The receptor tyrosine kinase (RTK)/phosphoinositide 3-kinase (PI3K) pathway is fundamental for cancer cell proliferation and is known to be frequently altered and activated in neoplasia, including embryonal tumors. Based on the high frequency of alterations, targeting components of the PI3K signaling pathway is considered to be a promising therapeutic approach for cancer treatment. Here, we have investigated the potential of targeting the axis of the insulin-like growth factor-1 receptor (IGF-1R) and PI3K signaling in two common cancers of childhood: neuroblastoma, the most common extracranial tumor in children and medulloblastoma, the most frequent malignant childhood brain tumor. By treating neuroblastoma and medulloblastoma cells with R1507, a specific humanized monoclonal antibody against the IGF-1R, we could observe cell line-specific responses and in some cases a strong decrease in cell proliferation. In contrast, targeting the PI3K p110α with the specific inhibitor PIK75 resulted in broad anti-proliferative effects in a panel of neuro- and medulloblastoma cell lines. Additionally, sensitization to commonly used chemotherapeutic agents occurred in neuroblastoma cells upon treatment with R1507 or PIK75. Furthermore, by studying the expression and phosphorylation state of IGF-1R/PI3K downstream signaling targets we found down-regulated signaling pathway activation. In addition, apoptosis occurred in embryonal tumor cells after treatment with PIK75 or R1507. Together, our studies demonstrate the potential of targeting the IGF-1R/PI3K signaling axis in embryonal tumors. Hopefully, this knowledge will contribute to the development of urgently required new targeted therapies for embryonal tumors.
Resumo:
Macrophage migration-inhibitory factor (MIF) has recently been identified as a pituitary hormone that functions as a counterregulatory modulator of glucocorticoid action within the immune system. In the anterior pituitary gland, MIF is expressed in TSH- and ACTH-producing cells, and its secretion is induced by CRF. To investigate MIF function and regulation within pituitary cells, we initiated the characterization of the MIF 5'-regulatory region of the gene. The -1033 to +63 bp of the murine MIF promoter was cloned 5' to a luciferase reporter gene and transiently transfected into freshly isolated rat anterior pituitary cells. This construct drove high basal transcriptional activity that was further enhanced after stimulation with CRF or with an activator of adenylate cyclase. These transcriptional effects were associated with a concomitant rise in ACTH secretion in the transfected cells and by an increase in MIF gene expression as assessed by Northern blot analysis. A cAMP-responsive element (CRE) was identified within the MIF promoter region which, once mutated, abolished the cAMP responsiveness of the gene. Using this newly identified CRE, DNA-binding activity was detected by gel retardation assay in nuclear extracts prepared from isolated anterior pituitary cells and AtT-20 corticotrope tumor cells. Supershift experiments using antibodies against the CRE-binding protein CREB, together with competition assays and the use of recombinant CREB, allowed the detection of CREB-binding activity with the identified MIF CRE. These data demonstrate that CREB is the mediator of the CRF-induced MIF gene transcription in pituitary cells through an identified CRE in the proximal region of the MIF promoter.
Resumo:
Summary : A large body of evidence indicates that the innate immune system plays a key role in host response to viral infection. Recently, Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), and NOD-like receptor receptors (NLRs) have emerged as key innate immune sensors of microbial products, eliciting intracellular signaling and leading to the production of chemokines, cytokines and interferons (IFNs) that shape innate immune responses and coordinate the development of adaptive immunity. Poxviruses are currently developed as vaccines vectors for infectious diseases such as HIV, tuberculosis and malaria. Modified vaccinia virus Ankara (MVA) and New York vaccinia virus (NWAC) are attenuated, replication deficient strains of poxvirus. The mechanisms underlying innate immune responses to MVA and NYVAC are poorly characterized. Thus, the objectives of the project were to determine the innate immune profile stimulated by poxviruses in innate immune cells and to evaluate the impact of modifications in the viral genome on MVA and NYVAC immunogenicity. MVA stimulated the production of abundant amounts of chemokines and IFNß but low levels of cytokines by human macrophages. In contrast, NYVAC weakly stimulated the production of all mediators. Interestingly, MVA and NYVAC strongly stimulated innate immune responses in vivo and in human whole blood, suggesting that a soluble factors}, possibly a complement component, was required for optimal activation of innate immune cells by poxviruses. Modified MVA and NYVAC produced by single or multiple deletions of viral genes targeting crucial pathways of host innate immunity, and mutant poxviruses with limited replication capacity, increased the production of pro-inflammatory molecules by human whole blood. Gene expression profiling in human macrophages confirmed the increased immunologic stimulatory capacity of modified poxviruses. The pathways activated by MVA and NYVAC in innate immune cells were described by analysing the response of knockdown or shRNA transduced macrophages with impaired expression of TLRs and their adaptors (MyD8$ and TRIF), RLRs (RIG-I, MDA-5 and the adaptor IPS-1) and the NALP3 inflammasome composed óf the NLR NALP3, caspase-1 and ASC. These experiments revealed a critical role for TLR2-TLR6-MyD88 in the production of tFNß-independent chemokines and of MDA-5-IPS-1 in the production of IFNß and IFNßdependent chemokines. The transcription of the iL1b gene encoding for the IL-1ß cytokine was initiated through TLR2-MyD88, whereas the maturation and the secretion of IL-1ß were controlled by the NALP3 inflammasome. Finally, we analyzed the role of macrophage migration inhibitory factor (MIF), a mediator of inflammation and innate immune responses, in MVA infection. We observed that MVA infection increased MIF production by innate immune cells and that MIF deficiency impaired macrophage and dendritic cell responses (ie migration, maturation, cytokine and IFN production) to MVA infection in vitro and in vivo. Moreover, MIF-deficiency resulted in delayed anti-MVA specific antibody production in mice immunized with the virus. In conclusion, we demonstrate. that poxviruses can be modified genetically to improve their immunogenicity. We also report the first comprehensive analysis of poxvirus sensing by innate immune cells, showing that the TLR, RLR and NLR pathways play specific and coordinated roles in regulating cytokine, chemokine and IFN response to poxvirus infection. Finally, we show that MIF is an integral host component involved in innate and adaptive immune responses to MVA infection. The present findings provide important information relevant to the study of the pathogenesis of poxvirus infections and allow a better understanding of the immunogenic potential of vaccine vectors, which is required for the development of optimized modìfied pox-vaccine vectors.
Resumo:
Tumor necrosis factor (TNF) ligand and receptor superfamily members play critical roles in diverse developmental and pathological settings. In search for novel TNF superfamily members, we identified a murine chromosomal locus that contains three new TNF receptor-related genes. Sequence alignments suggest that the ligand binding regions of these murine TNF receptor homologues, mTNFRH1, -2 and -3, are most homologous to those of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors. By using a number of in vitro ligand-receptor binding assays, we demonstrate that mTNFRH1 and -2, but not mTNFRH3, bind murine TRAIL, suggesting that they are indeed TRAIL receptors. This notion is further supported by our demonstration that both mTNFRH1:Fc and mTNFRH2:Fc fusion proteins inhibited mTRAIL-induced apoptosis of Jurkat cells. Unlike the only other known murine TRAIL receptor mTRAILR2, however, neither mTNFRH2 nor mTNFRH3 has a cytoplasmic region containing the well characterized death domain motif. Coupled with our observation that overexpression of mTNFRH1 and -2 in 293T cells neither induces apoptosis nor triggers NFkappaB activation, we propose that the mTnfrh1 and mTnfrh2 genes encode the first described murine decoy receptors for TRAIL, and we renamed them mDcTrailr1 and -r2, respectively. Interestingly, the overall sequence structures of mDcTRAILR1 and -R2 are quite distinct from those of the known human decoy TRAIL receptors, suggesting that the presence of TRAIL decoy receptors represents a more recent evolutionary event.
Resumo:
Type 1 diabetes is characterized by the infiltration of activated leukocytes within the pancreatic islets, leading to beta-cell dysfunction and destruction. The exact role played by interferon-gamma, tumor necrosis factor (TNF)-alpha, and interleukin-1beta in this pathogenic process is still only partially understood. To study cytokine action at the cellular level, we are working with the highly differentiated insulin-secreting cell line, betaTc-Tet. We previously reported that it was susceptible to apoptosis induced by TNF-alpha, in combination with interleukin-1beta and interferon-gamma. Here, we report that cytokine-induced apoptosis was correlated with the activation of caspase-8. We show that in betaTc-Tet cells, overexpression of cFLIP, the cellular FLICE (FADD-like IL-1beta-converting enzyme)-inhibitory protein, completely abolished cytokine-dependent activation of caspase-8 and protected the cells against apoptosis. Furthermore, cFLIP overexpression increased the basal and interleukin-1beta-mediated transcriptional activity of nuclear factor (NF)-kappaB, whereas it did not change cytokine-induced inducible nitric oxide synthase gene transcription and nitric oxide secretion. The presence of cFLIP prevented the weak TNF-alpha-induced reduction in cellular insulin content and secretion; however, it did not prevent the decrease in glucose-stimulated insulin secretion induced by the combined cytokines, in agreement with our previous data demonstrating that interferon-gamma alone could induce these beta-cell dysfunctions. Together, our data demonstrate that overexpression of cFLIP protects mouse beta-cells against TNF-alpha-induced caspase-8 activation and apoptosis and is correlated with enhanced NF-kappaB transcriptional activity, suggesting that cFLIP may have an impact on the outcome of death receptor-triggered responses by directing the intracellular signals from beta-cell death to beta-cell survival.
Resumo:
The calcium-binding protein calretinin has emerged as a useful marker for the identification of mesotheliomas of the epithelioid and mixed types, but its putative role in tumor development has not been addressed previously. Although exposure to asbestos fibers is considered the main cause of mesothelioma, undoubtedly, not all mesothelioma patients have a history of asbestos exposure. The question as to whether the SV40 virus is involved as a possible co-factor is still highly debated. Here we show that increased expression of SV40 early gene products in the mesothelial cell line MeT-5A induces the expression of calretinin and that elevated calretinin levels strongly correlate with increased resistance to asbestos cytotoxicity. Calretinin alone mediates a significant part of this protective effect because cells stably transfected with calretinin cDNA were clearly more resistant to the toxic effects of crocidolite than mock-transfected control cells. Down-regulation of calretinin by antisense methods restored the sensitivity to asbestos toxicity to a large degree. The protective effect observed in clones with higher calretinin expression levels could be eliminated by phosphatidylinositol 3-kinase (PI3K) inhibitors, implying an important role for the PI3K/AKT signaling (survival) pathway in mediating the protective effect. Up-regulation of calretinin, resulting from either asbestos exposure or SV40 oncoproteins, may be a common denominator that leads to increased resistance to asbestos cytotoxicity and thereby contributes to mesothelioma carcinogenesis.
Resumo:
Calcineurin is the only known serine-threonine phosphatase under calcium-calmodulin control and key regulator of the immune system. Treatment of patients with calcineurin-inhibitory drugs like cyclosporin A and FK506 to prevent graft rejection dramatically increases the risk of cutaneous squamous cell carcinoma, which is a major cause of death after organ transplants. Recent evidence indicates that suppression of calcineurin signaling, together with its impact on the immune system, exerts direct tumor-promoting effects in keratinocytes, enhancing cancer stem cell potential. The underlying mechanism involves interruption of a double negative regulatory axis, whereby calcineurin and nuclear factors of activated T-cell signaling inhibits expression of ATF3, a negative regulator of p53. The resulting suppression of keratinocyte cancer cell senescence is of likely clinical significance for the many patients under treatment with calcineurin inhibitors and may be of relevance for other cancer types in which altered calcium-calcineurin signaling plays a role.
Resumo:
Résumé: Le traitement du cancer avancé de la tête et du cou nécessite souvent une approche multidisciplinaire associant la chirurgie, la radiothérapie et la chimiothérapie. Chacun de ces traitements présente des avantages, des limites et des inconvénients. En raison de la localisation de la tumeur primaire et/ou des métastases ganglionnaires, les glandes salivaires majeures sont fréquemment touchées par les traitements oncologiques. La salive joue un rôle déterminant dans la cavité buccale car elle lubrifie les tissus et facilite à la fois la déglutition et l'élocution. Son contenu en électrolytes et en protéines, dont certaines possèdent un effet antibactérien, protège les dents de la déminéralisation par l'acidité. Une fonction normale, liée autant à la quantité qu'à la qualité de la salive, reste indispensable pour le maintien d'une bonne santé buccale. L'objectif de cette étude prospective a été de déterminer, dans un groupe homogène de patients, l'influence d'un traitement de radiothérapie sur divers paramètres salivaires comme la sécrétion, le pH et l'effet tampon, avant, pendant et jusqu'à un an après la fin du traitement. L'étude a aussi examiné le comportement de ces paramètres salivaires après une intervention chirurgicale seule au niveau de la tête et du cou, avec ou sans exérèse d'une glande sous- maxillaire. L'étude s'est basée sur 54 patients (45 hommes et 9 femmes) atteints d'un carcinome épidermoïde avancé avec une localisation oro-pharyngée confirmée (n = 50) ou soupçonnée (n = 4), adressés et investigués dans le Centre Hospitalier Universitaire Vaudois de Lausanne, Suisse. Tous ces patients furent traités par radiothérapie seule ou en combinaison avec une chirurgie et/ou une chimiothérapie. Trente-neuf des 54 patients parvinrent à la fin de cette étude qui s'est étendue jusqu'à 12 mois au-delà de la radiothérapie. La chirurgie de la tête et cou, en particulier après ablation de la glande sous-maxillaire, a révélé un effet négatif sur la sécrétion salivaire. Elle n'influence en revanche ni le pH, ni l'effet tampon de la salive. Cependant, l'effet sur la sécrétion salivaire lié à la chirurgie est progressivement masqué par l'effet de la radiothérapie et n'est plus identifiable après 3-6 mois. Dès le début de la radiothérapie, la sécrétion salivaire chût très manifestement pour diminuer progressivement jusqu'à 1/3 de sa capacité à la fin du traitement actinique. Une année après la fin de cette radiothérapie, la dysfonction salivaire est caractérisée par une diminution moyenne de la sécrétion salivaire, de 93 % (p < 0,0001) pour la salive au repos et de 95 % (p < 0.0001) pour la salive stimulée, par rapport aux valeurs pré-thérapeutiques. Le pH salivaire ainsi que l'effet tampon furent également influencés par le traitement actinique. L'effet tampon a présenté une diminution à 67 % à une année post-traitement en comparaison de sa valeur pré-thérapeutique. Le pH de la salive stimulée présente une légère, mais significative, diminution par rapport à sa valeur antérieure à la radiothérapie. En conclusion, la chirurgie des cancers de l'oropharynx précédant une radiothérapie a une influence négative sur la sécrétion salivaire sans aggraver l'hyposialie consécutive aux radiations ionisantes. Cette étude confirme qu'un traitement oncologique comprenant une irradiation totale des glandes salivaires majeures chez des patients atteints d'un carcinome épidermoïde avancé de la région oro-pharyngée, induit une perte sévère et à long terme de la sécrétion salivaire avec une altération du pH et de l'effet tampon Abstract: Objective. We sought to investigate the impact of head and neck cancer treatment on salivary function. Study design. The study was conducted on 54 patients with advanced squamous cell carcinoma with confirmed (n =50) or suspected (n = 4) primary oropharyngeal localization who were treated with radiation alone or in combination with surgery or chemotherapy, or both. The following groups were considered in the evaluation: 1, the entire pool of patients; 2, those undergoing surgery and those not undergoing surgery before radiation; 3, those undergoing resection and those not undergoing resection of the submandibular gland. The flow rates, pH, and buffering capacity were determined before, during, and up to 12 months after the completion of radiation. Results. Head and neck surgery, particularly when submandibular gland resection was performed, had a negative impact on salivary flow rates but did not influence pH or buffering capacity. Nonetheless, the effect of surgery on salivary flow rates decreased progressively and disappeared at 3 to 6 months after radiotherapy. More than two thirds of the salivary output was lost during radiation treatment. All patients were experiencing salivary dysfunction at 1 year after completion of radiotherapy, with average decreases of 93% (P < .0001) and 95% (P < .0001) for whole resting salivary flow and whole stimulated salivary flow, respectively, compared with the preradiotherapy values. The buffering capacity decreased to 67% of its preradiotherapy value, and whole stimulated saliva became acidic. Conclusions. The result of this study confirms that cancer treatment involving full-dose radiotherapy (RTH) to all major salivary glands for locally advanced squamous cell carcinoma of the oropharynx induces severe hyposalivation with alteration of salivary pH and buffering capacity. Head and neck surgery has a negative impact on salivary flow rates, especially when the submandibular gland is removed. However, surgery before irradiation is not a factor aggravating hyposalivation when postoperative radiotherapy includes all the major salivary glands.