933 resultados para CDNA ISOLATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ecologically important stream invertebrate Gammarus fossarum is a morphospecies that includes at least three genetically differentiated biological species. We developed ten microsatellite markers and tested them in a total of 208 individuals from all three known cryptic species (types A, B and C). All markers were polymorphic and successfully amplified in type A, nine in type B and five in type C. There were up to 11 alleles per marker and species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research indicates a uniformly positive use of psychoeducational groups to counter social isolation of neglectful mothers. This research was supported by a National Child Welfare Fellowship from the U.S. Children 's Bureau to the author. The author thanks Nancy Dickinson, Sherrill Clark, and the staff of the California Social Work Education Center at the University of California for their oversight and guidance during (his fellowship. The author is also grateful to her fellow fellows for their input and guidance during this research effort. Special thanks to Rose Ben ham, Anna Bowen, Judith Brewington, Caron Byington, Scottye Cash. Dottie Dixon, and Verna Rickard for their support of this project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recA gene is essential for homologous recombination and for inducible DNA repair in Escherichia coli. The level of recA expression is important for these functions. The growth defect of a lambda phage carrying a recA-lacZ fusion was used to select mutations that reduced recA expression. Nine of these mutations were single base changes in the recA promoter; each reduced both induced and basal (repressed) levels of expression, indicating that only one promoter is used under both circumstances. Deletion analysis of the promoter region and S1 mapping of transcripts confirmed that there is only one promoter responsible for both basal and induced expression. Some of the mutants, however, displayed a ratio of induced to repressed expression that was much lower than wild-type. For one of these mutants (recA1270) LexA binding studies showed that this was not due to a change in the affinity of LexA repressor for the operator site. The extent of binding of RNA polymerase to this mutant promoter, however, was much reduced, and the complexes formed were qualitatively different. Further binding experiments provided some evidence that LexA does not block RNA polymerase binding to the recA promoter, but inhibits a later step in initiation. Behavior of the mutants with altered induction ratios could be explained if LexA binding to the operator actually increases RNA polymerase binding to the promoter in a closed complex compensating for defects in polymerase binding caused by the mutations.^ In a study of mutations in the recA structural gene, site-directed mutagenesis was used to replace cysteine codons at positions 90, 116, and 129 with a number of different codons. In vivo analysis of the replacements showed that none of the cysteines is absolutely essential and that they do not have a direct role as catalysts in ATP hydrolysis. Some amino acid substitutions abolished all RecA functions, while a few resulted in partial or altered function. Amino acids at positions 90 and 129 tended to affect all functions equally, while the amino acid at position 116 appeared to have a particular effect on the protease activity of the protein. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclosporine (CsA) has shown great benefit to organ transplant recipients, as an immunosuppressive drug. To optimize CsA immunosuppressive therapy, pharmacodynamic evaluation of serial patient serum samples after CsA administration, using mixed lymphocyte culture (MLC) assays, revealed in vitro serum immunosuppressive activity of a CsA-like, ether-extractable component, associated with good clinical outcome in vivo. Since the in vitro immunosuppressive CsA metabolites, M-17 and M-1, are erythrocyte-bound, the immunosuppressive activity demonstrated in patient serum suggests that other immunosuppressive metabolites need exist. To test this hypothesis and obtain CsA metabolites for study, ether-extracted bile from tritiated and nonradioactive CsA-treated pigs was processed by novel high performance liquid and thin-layer chromatography (HPLC and HPTLC) techniques. Initial MLC screening of potential metabolites revealed a component, designated M-E, to have immunosuppressive activity. Pig bile-derived M-E was characterized as a CsA metabolite, by radioactive CsA tracer studies, by 56% crossreactivity in CsA radioimmunoassay, and by mass spectrometric (MS) analysis. MS revealed a CsA ring structure, hydroxylated at a site other than at amino acid one. M-E was different than M-1 and M-17, as demonstrated by different retention properties for each metabolite, using HPTLC and a novel rhodamine B/ $\alpha$-cyclodextrin stain, and using HPLC, performed by Sandoz, that revealed M-E to be different than previously characterized metabolites. The immunosuppressive activity of M-E was quantified by determination of mean metabolite potency ratio in human MLC assays, which was found to be 0.79 $\pm$ 0.23 (CsA, 1.0). Similar to parent drug, M-E revealed inter-individual differences in its immunosuppressive activity. M-E demonstrates inhibition of IL-2 production by concanavalin A stimulated C3H mouse spleen cells, similar to CsA, as determined with an IL-2 dependent mouse cytotoxic T-cell line. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method employing isotopically- and photoaffinity-labeled probes and polyclonal and monoclonal antibody to the probes for the identification, isolation and recovery of protein receptors is described. Antibody was raised against N-(3-(p-azido-m-($\sp{125}$I) -iodophenyl)) propionate (AIPP) coupled to and photolyzed to BSA. The antibodies specifically bound AIPP-derivatized proteins. An isolation system was developed utilizing this probe and two antigenically identical reversible analogues. N-(3-((p-azido-m-($\sp{125}$I) -iodo-phenyl)propionyl)amidoethyl-1,3-dithiopropionyl) succinimide (Reversible $\sp{125}$I-AIPPS) reacts with primary amines and N-(((3-p-azido-m-($\sp{125}$I) -iodophenyl)propionyl)amidoethyl)dithiopyridine ($\sp{125}$I-AIPP-PDA) reacts with reduced thiols. The applicability of the system was established by derivatizing known ligands (Transferrin and Interferon-alpha) with one of the probes. The ligand-probe was then allowed to interact with its receptor by incubation with SS5 lymphoma cells and cross-linked by photolysis at 300 nm. The photolyzed ligand/probe/receptor preparation was then recovered with AIPP antibody. Utilization of N-(3-((p-azido-m-($\sp{125}$I) -iodo-phenyl-propionyl)-amidoethyl-1,3-dithiopropionyl) succinimide (Reversible $\sp{125}$I-AIPPS) allowed the components of the photolyzed complex to be separated by treatment with 2-mercaptoethanol in the SDS-PAGE solubilization buffer. Ligand and receptor labeling were then assessed by Coomassie staining and autoradiography. Results of receptor assays suggest that $\sp{125}$I-AIPP was, indeed, transferred to moieties that represent the receptors for both Transferrin and Interferon-alpha. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human x rodent somatic cell hybrids have played an important role in human genetics research. They have been especially useful for assigning genes to chromosomes and isolating DNA markers from specific regions of the human genome.^ By employing a combination of somatic cell genetic, recombinant DNA, and cytogenetic techniques, human DNA excision repair gene ERCC4 was mapped regionally to human 16p13.13-13.2, even though the gene has not been cloned. Human x Chinese hamster ovary (CHO) cell hybrids selected for human ERCC4 activity and containing 16p13.1-p13.3 as the only human genetic material were identified. These hybrids were used to order DNA markers located in 16p13.1-p13.3. New DNA markers physically close to ERCC4 were isolated from such hybrids. Using amplified human DNA from the hybrids as probe in fluorescent in situ hybridization, the short arm breakpoint in the chromosome 16 inversion associated with acute myelomonocytic leukemia (AMML) was found to be physically close to the ERCC4 gene. The physical mapping and eventually, the cloning of the ERCC4 gene, will benefit the understanding of the DNA repair system and the study of other important biomedical problems such as tumorigenesis.^ To facilitate the cloning of ERCC4 gene and, in general, the cloning of genes from any defined regions of the human genome, a method was developed for the direct isolation of human transcribed genes ffom somatic cell hybrids. cDNA was prepared from human x rodent hybrid by using consensus 5$\sp\prime$ splice site sequences as primers. These primers were designed to select immature, unspliced messenger RNA (still retaining species specific repeat sequences) as templates. Screening of a derived cDNA library for human repeat sequences resulted in the isolation of human clones at the anticipated frequency with characteristics expected of exons of transcribed human genes. The usefulness of the splice site specific primers was analyzed and the cDNA synthesis conditions with these primers were optimized. The procedure was shown to be sensitive enough to clone weakly expressed genes. Studying the expression of the represented genes with the isolated clones was shown to be feasible. Such regional specific human gene fragments will be very valuable for many human genetic studies such as the search of inherited disease genes and the construction of a cDNA map of the human genome. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heparanase, an endo-$\beta$-D-glucuronidase, has been associated with melanoma metastasis. Polyclonal antibodies directed against the murine N-terminal heparanase peptide detected a M$\sb{\rm r}\sim 97,000$ protein upon SDS-polyacrylamide gel electrophoresis of mouse melanoma and human melanoma cell lysates. In an indirect immunocytochemical study, metastatic human A375-SM and mouse B16-BL6 melanoma cells were stained with the anti-heparanase antibodies. Heparanase antigen was localized in the cytoplasm of permeabilized melanoma cells as well as at the cell surface of unpermeabilized cells. Immunohistochemical staining of frozen sections from syngeneic mouse organs containing micrometastases of B16-BL6 melanoma demonstrated heparanase localized in metastatic melanoma cells, but not in adjacent normal tissues. Similar studies using frozen sections of malignant melanomas resected from patients indicated that heparanase is localized in invading melanoma cells, but not in adjacent connective tissues.^ Monoclonal antibodies directed against murine heparanase were developed and characterized. Monoclonal antibody 10E5, an IgM, precipitated and inhibitated the enzymatic activity of heparanase. A 2.6 kb cDNA was isolated from a human melanoma $\lambda$gt11 cDNA library using the monoclonal antibody 10E5. Heparan sulfate cleavage activity was detected in the lysogen lysates from E. Coli Y1089 infected with the $\lambda$gt11 cDNA and this activity was inhibited in the presence of 10-fold excess of heparin, a potent inhibitor of heparanase. The nucleotide sequence of the cDNA was determined and insignificant homology was found with the gene sequences currently known. The cDNA hybridized to a 3.2-3.4 kb mRNA in human A375 melanoma, WI-38 fibroblast, and THP-1 leukemia cells using Northern blots.^ Heparanase expression was examined using Western and Northern blots. In comparison to human A375-P melanoma cells, the quantity of 97,000 protein recognized by the polyclonal anti-heparanase antibodies doubled in the metastatic variant A375-SM cells and the quantity of 3.2-3.4 kb mRNA doubled in A375MetMix, a metastatic variant similar to A375-SM cells. In B16 murine melanoma cell, the intensity of the 97,000 protein increased more than 2 times comparing with B16-F1 cells. The extent in the increase of the protein and the mRNA levels is comparable to the change of heparanase activity observed in those cells.^ In summary, the studies suggest that (a) the N-terminus of the heparanase molecule in mouse and human is antigenically related; (b) heparanase antigens are localized at the cell surface and in the cytoplasm of metastatic human and mouse melanoma cells; (c) heparanase antigens are localized in invasive and metastatic murine and human melanomas in vivo, but not in adjacent normal tissues; (d) heparanase molecule appeared to be differentially expressed at the transcriptional as well as at the translational level; and (e) the size of human heparanase mRNA is 3.2-3.4 kilobase. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I have cloned cDNAs corresponding to two distinct genes, Xlmf1 and Xlmf25, which encode skeletal muscle-specific, transcriptional regulatory proteins. These proteins are members of the helix-loop-helix family of DNA binding factors, and are most homologous to MyoD1. These two genes have disparate temporal expression patterns during early embryogenesis; although, both transcripts are present exclusively in skeletal muscle of the adult. Xlmf1 is first detected 7 hours after fertilization, shortly after the midblastula transition. Xlmf25 is detected in maternal stores of mRNA, during early cleavage stages of the embryo and throughout later development. Both Xlmf1 and Xlmf25 transcripts are detected prior to the expression of other, previously characterized, muscle-specific genes. The ability of Xlmf1 and Xlmf25 to convert mouse 10T1/2 fibroblasts to a myogenic phenotype demonstrates their activity as myogenic regulatory factors. Additionally, Xlmf1 and Xlmf25 can directly transactivate a reporter gene linked to the muscle-specific, muscle creatine kinase (MCK) enhancer. The functional properties of Xlmf1 and Xlmf25 proteins were further explored by investigating their interactions with the binding site in the MCK enhancer. Analysis of dissociation rates revealed that Xlmf25-E12 dimers had a two-fold lower avidity for this site than did Xlmf1-E12 dimers. Clones containing genomic sequence of Xlmf1 and Xlmf25 have been isolated. Reporter gene constructs containing a lac-z gene driven by Xlmf1 regulatory sequences were analyzed by embryo injections and transfections into cultured muscle cells. Elements within $-$200 bp of the transcription start site can promote high levels of muscle specific expression. Embryo injections show that 3500 bp of upstream sequence is sufficient to drive somite specific expression. EMSAs and DNAse I footprint analysis has shown the discrete interaction of factors with several cis-elements within 200 bp of the transcription start site. Mutation of several of these elements shows a positive requirement for two CCAAT boxes and two E boxes. It is evident from the work performed with this promoter that Xlmf1 is tightly regulated during muscle cell differentiation. This is not surprising given the fact that its gene product is crucial to the determination of cell fate choices. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heparan sulfate proteoglycans and their corresponding binding sites have been suggested to play an important role during the initial attachment of blastocysts to uterine epithelium and human trophoblastic cell lines to uterine epithelial cell lines. Previous studies on RL95 cells, a human uterine epithelial cell line, characterized a single class of cell surface heparin/heparan sulfate (HP/HS)-binding sites. Three major HP/HS-binding peptide fragments were isolated from RL95 cell surfaces by tryptic digestion and partial amino-terminal amino acid sequence from each peptide fragment was obtained. In the current study, using the approaches of reverse transcription-polymerase chain reaction and cDNA library screening, a novel cell surface $\rm\underline{H}$P/HS $\rm\underline{i}$nteracting $\rm\underline{p}$rotein (HIP) has been isolated from RL95 cells. The full-length cDNA of HIP encodes a protein of 259 amino acids with a calculated molecular weight of 17,754 Da and pI of 11.75. Transfection of HIP cDNA into NIH-3T3 cells demonstrated cell surface expression and a size similar to that of HIP expressed by human cells. Predicted amino acid sequence indicates that HIP lacks a membrane spanning region and has no consensus sites for glycosylation. Northern blot analysis detected a single transcript of 1.3 kb in both total RNA and poly(A$\sp+$) RNA. Examination of human cell lines and normal tissues using both Northern blot and Western blot analysis revealed that HIP is differentially expressed in a variety of human cell lines and normal tissues, but absent in some cell lines examined. HIP has about 80% homology, at the level of both mRNA and protein, to a rodent protein, designated as ribosomal protein L29. Thus, members of the L29 family may be displayed on cell surfaces where they participate in HP/HS binding events. Studies on a synthetic peptide derived from HIP demonstrate that HIP peptide binds HS/HP with high selectivity and has high affinity (Kd = 10 nM) for a subset of polysaccharides found in commercial HIP preparations. Moreover, HIP peptide also binds certain forms of cell surface, but not secreted or intracellular. HS expressed by RL95 and JAR cells. This peptide supports the attachment of several human trophoblastic cell lines and a variety of mammalian adherent cell lines in a HS-dependent fashion. Furthermore, studies on the subset of HP specifically recognized by HIP peptide indicate that this high-affinity HP (HA-HP) has a larger median MW and a greater negative charge density than bulk HP. The minimum size of oligosaccharide required to bind to HIP peptide with high affinity is a septa- or octasaccharide. HA-HP also quantitatively binds to antithrombin-III (AT-III) with high affinity, indicating that HIP peptide and AT-III may recognize the same or similar oligosaccharide structure(s). Furthermore, HIP peptide antagonizes HP action and promotes blood coagulation in both factor Xa- and thrombin-dependent assays. Finally, HA-HP recognized by HP peptide is highly enriched with anticoagulant activity relative to bulk HP. Collectively, these results demonstrate that HIP may play a role in the HP/HS-involved cell-cell and cell-matrix interactions and recognizes a motif in HP similar or identical to that recognized by AT-III and therefore, may modulate blood coagulation. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinitis pigmentosa (RP) is an inherited retinal degenerative disease that is the leading cause of inherited blindness worldwide. Characteristic features of the disease include night blindness, progressive loss of visual fields, and deposition of pigment on the retina in a bone spicule-like pattern. RP is marked by extreme genetic heterogeneity with at least 19 autosomal dominant, autosomal recessive and X-linked loci identified. RP10, which maps to chromosome 7q, was the fifth autosomal dominant RP locus identified, and accounts for the early-onset disease in two independent families. Extensive linkage and haplotype analyses have been performed in these two families which have allowed the assignment of the disease locus to a 5-cM region on chromosome 7q31.3. In collaboration with Dr. Eric Green (National Center for Human Genome Research, National Institutes of Health), a well-characterized physical map of the region was constructed which includes YAC, BAC and cosmid coverage. The entire RP10 critical region resides within a 9-Mb well-characterized YAC contig. These physical maps not only provided the resources to undertake the CAIGES (cDNA amplification for identification of genomic expressed sequences) procedure for identification of retinal candidate genes within the critical region, but also identified a number of candidate genes, including transducin-$\gamma$ and blue cone pigment genes. All candidate genes examined were excluded. In addition, a number of ESTs were mapped within the critical region. EST20241, which was isolated from an eye library, corresponded to the 3$\sp\prime$ region of the ADP-ribosylation factor (ARF) 5 gene. ARF5, with its role in vesicle transport and possible participation in the regulation of the visual transduction pathway, became an extremely interesting candidate gene. Using a primer walking approach, the entire 3.2 kb genomic sequence of the ARF5 gene was generated and developed intronic primers to screen for coding region mutations in affected family members. No mutations were found in the ARF5 gene, however, a number of additional ESTs have been mapped to the critical region, and, as the large-scale sequencing projects get underway, megabases of raw sequence data from the RP10 region are becoming available. These resources will hasten the isolation and characterization of the RP10 gene. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One full length cDNA clone, designated 3aH15, was isolated from a rat brain cDNA library using a fragment of CYP3A2 cDNA as a probe. 3aH15 encoded a protein composed of 503 amino acid residues. The deduced amino acid sequence of 3aH15 was 92% identical to mouse Cyp3a-13 and had a 68.4% to 76.5% homology with the other reported rat CYP3A sequences. Clone 3aH15 was thus named CYP3A9 by Cytochrome P450 Nomenclature Committee. CYP3A9 seems to the major CYP3A isozyme expressed in rat brain. Sexual dimorphism of the expression of CYP3A9 was shown for the first time in rat brain as well as in rat liver. CYP3A9 appears to be female specific in rat liver based on the standards proposed by Kato and Yamazoe who defined sex specific expression of P450s as being a 10-fold or higher expression level in one sex compared with the other. CYP3A9 gene expression was inducible by estrogen treatment both in male and in female rats. Male rats treated with estrogen had a similar expression level of CYP3A9 mRNA both in the liver and brain. Ovariectomy of adult female rats drastically reduced the mRNA level of CYP3A9 which could be fully restored by estrogen replacement. On the other hand, only a two-fold induction of CYP3A9 expression by dexamethasone was observed in male liver and no significant induction of CYP3A9 mRNA was observed in female liver or in the brains. These results suggest that estrogen may play an important role in the female specific expression of the CYP3A9 gene and that CYP3A9 gene expression is regulated differently from other CYP3A isozymes. ^ P450 3A9 recombinant protein was expressed in E. coli using the pCWOri+ expression vector and the MALLLAVF amino terminal sequence modification. This construct gave a high level of expression (130 nmol P450 3A9/liter culture) and the recombinant protein of the modified P450 3A9 was purified to electrophoretic homogeneity (10.1 nmol P450/mg protein) from solubilized fractions using two chromatographic steps. The purified P450 3A9 protein was active towards the metabolism of many clinically important drugs such as imipramine, erythromycin, benzphetamine, ethylmorphine, chlorzoxazone, cyclosporine, rapamycin, etc. in a reconstituted system containing lipid and rat NADPH-P450 reductase. Although P450 3A9 was active towards the catabolism of testosterone, androstenedione, dehydroepiandrosterone (DHEA) and 17β-estradiol, P450 3A9 preferentially catalyzes the metabolism of progesterone to form four different hydroxylated products. Optimal reconstitution conditions for P450 3A9 activities required a lipid mixture and GSH. The possible mechanisms of the stimulatory effects of GSH on P450 3A9 activities are discussed. Sexually dimorphic expression of P450 3A9 in the brain and its involvement in many neuroactive drugs as well as neurosteroids suggest the possible role of P450 3A9 in some mental disorders and brain functions. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unlike most carbohydrates, sialic acids have a restricted distribution in nature, being present in higher animals and in certain bacteriae. Unfortunately, most studies have not taken into account the fact that the parent sialic acid molecules, N-acetyl(or N-glycolyl)-neuraminic acid can be O-substituted at the 4, 7, 8 and 9 positions, generating many compounds and isomers. The approach and results of this research study demonstrates that proportions of non-, mono-, di-, and tri-O-acetylated sialic acids can be identified and quantitated on normal and malignant human cells. This was accomplished using a paper chromatographic technique to isolate and resolve individual species of non and O-substituted sialic acids. The chemical nature of these O-substituents, as an acetyl ester, was determined on the basis of chemical degradation, enzymatic and fast atom bombardment-mass spectrometry analysis.^ The working hypothesis of this study, that O-acetylated sialic acids are expressed in a restricted manner on normal and malignant cells, was confirmed using the above experimental approach; which identified mono-, di-, and tri-O-acetylated sialic acids on a variety of normal and malignant human cells. These O-acetylated sialic acids were expressed in restricted manner on subpopulations and subcellular fractions of PHL melanoma cells. Aberrant expression of O-acetylated sialic acids was associated with adenocarcinoma of the colon, leading to a nearly complete loss of di- and tri-O-acetylated sialic acids.^ Thus, the ability to isolate and identify biosynthetically radiolabeled O-acetylated sialic acids offers an efficient method of monitoring the expression of O-acetylated sialic acids in biochemical and cellular interactions. Furthermore, the ability to identify abnormal ratios of O-acetylated sialic acids in the human colon, represents a possible diagnostic tool to evaluate and identify patients who may be genetically or culturally predisposed to the development of adenocarcinoma of the colon. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identifying drivers of species diversity is a major challenge in understanding and predicting the dynamics of species-rich semi-natural grasslands. In particular in temperate grasslands changes in land use and its consequences, i.e. increasing fragmentation, the on-going loss of habitat and the declining importance of regional processes such as seed dispersal by livestock, are considered key drivers of the diversity loss witnessed within the last decades. It is a largely unresolved question to what degree current temperate grassland communities already reflect a decline of regional processes such as longer distance seed dispersal. Answering this question is challenging since it requires both a mechanistic approach to community dynamics and a sufficient data basis that allows identifying general patterns. Here, we present results of a local individual- and trait-based community model that was initialized with plant functional types (PFTs) derived from an extensive empirical data set of species-rich grasslands within the `Biodiversity Exploratories' in Germany. Driving model processes included above- and belowground competition, dynamic resource allocation to shoots and roots, clonal growth, grazing, and local seed dispersal. To test for the impact of regional processes we also simulated seed input from a regional species pool. Model output, with and without regional seed input, was compared with empirical community response patterns along a grazing gradient. Simulated response patterns of changes in PFT richness, Shannon diversity, and biomass production matched observed grazing response patterns surprisingly well if only local processes were considered. Already low levels of additional regional seed input led to stronger deviations from empirical community pattern. While these findings cannot rule out that regional processes other than those considered in the modeling study potentially play a role in shaping the local grassland communities, our comparison indicates that European grasslands are largely isolated, i.e. local mechanisms explain observed community patterns to a large extent.