997 resultados para CARBOHYDRATE-BINDING MODULES
Resumo:
The clinical heterogeneity observed in leptospirosis may be associated with host factors or bacteria virulence. Human serum mannose-binding lectin (MBL) recognizes many pathogens, and low levels of this lectin are associated with susceptibility to infection. MBL is also implicated in the modulation of the inflammatory process. We determined the levels of serum MBL during leptospirosis infection. A double-antibody sandwich ELISA was used to detect the immunoreactive serum MBL. The ELISA plates were coated with monoclonal antibody to MBL and bound MBL or recombinant human MBL were detected by rabbit anti-human MBL serum. HRPO-conjugated goat anti-rabbit antibody was used for detection of the reaction. Two groups of patients seen at referral hospitals in Recife, PE, Brazil, were divided according to the year of infection, 2001 (N = 61) or 2002 (N = 57) and compared in terms of disease severity and levels of serum MBL. A group of healthy volunteers (N = 97) matched by age, gender, and ethnic background was used as control. Patients infected in 2001 had more severe outcomes than those infected in 2002, including jaundice, hemorrhage, respiratory alteration, and renal complication (P = 0.0009; chi-square test). The frequency of patients producing serum MBL >1000 ng/mL was higher in the 2001 group than in the 2002 and control groups (P < 0.01), suggesting an association of MBL level with disease severity. The involvement of MBL and genetic variation of the MBL2 gene should be further evaluated to establish the role of this lectin in the pathogenesis of leptospirosis.
Resumo:
This study examined the effects of pre-exercise carbohydrate availability on the time to exhaustion for moderate and heavy exercise. Seven men participated in a randomized order in two diet and exercise regimens each lasting 3 days with a 1-week interval for washout. The tests were performed at 50% of the difference between the first (LT1) and second (LT2) lactate breakpoint for moderate exercise (below LT2) and at 25% of the difference between the maximal load and LT2 for heavy exercise (above LT2) until exhaustion. Forty-eight hours before each experimental session, subjects performed a 90-min cycling exercise followed by 5-min rest periods and a subsequent 1-min cycling bout at 125% VO2max/1-min rest periods until exhaustion to deplete muscle glycogen. A diet providing 10% (CHOlow) or 65% (CHOmod) energy as carbohydrates was consumed for 2 days until the day of the experimental test. In the exercise below LT2, time to exhaustion did not differ between the CHOmod and the CHOlow diets (57.22 ± 24.24 vs 57.16 ± 25.24 min). In the exercise above LT2, time to exhaustion decreased significantly from 23.16 ± 8.76 min on the CHOmod diet to 18.30 ± 5.86 min on the CHOlow diet (P < 0.05). The rate of carbohydrate oxidation, respiratory exchange ratio and blood lactate concentration were reduced for CHOlow only during exercise above LT2. These results suggest that muscle glycogen depletion followed by a period of a low carbohydrate diet impairs high-intensity exercise performance.
Resumo:
The role of chloride in the stabilization of the deoxy conformation of hemoglobin (Hb), the low oxygen affinity state, has been studied in order to identify the nature of this binding. Previous studies have shown that arginines 141α could be involved in the binding of this ion to the protein. Thus, des-Arg Hb, human hemoglobin modified by removal of the α-chain C-terminal residue Arg141α, is a possible model for studies of these interactions. The loss of Arg141α and all the salt bridges in which it participates is associated with subtle structural perturbations of the α-chains, which include an increase in the conformational flexibility and further shift to the oxy state, increasing oxygen affinity. Thus, this Hb has been the target of many studies of structural and functional behavior along with medical applications. In the present study, we describe the biochemical characterization of des-Arg Hb by electrophoresis, high-performance liquid chromatography and mass spectroscopy. The effects of chloride binding on the oxygen affinity and on the cooperativity to des-Arg Hb and to native human hemoglobin, HbA, were measured and compared. We confirm that des-Arg Hb presents high oxygen affinity and low cooperativity in the presence of bound chloride and show that the binding of chloride to des-Arg does not change its functional characteristics as observed with HbA. These results indicate that Arg141α may be involved in the chloride effect on Hb oxygenation. Moreover, they show that these residues contribute to lower Hb oxygen affinity to a level compatible with its biological function.
Resumo:
Variations in the estrogenic activity of the phytoestrogen-rich plant, Pueraria mirifica, were determined with yeast estrogen screen (YES) consisting of human estrogen receptors (hER) hERα and hERβ and human transcriptional intermediary factor 2 (hTIF2) or human steroid receptor coactivator 1 (hSRC1), respectively, together with the β-galactosidase expression cassette. Relative estrogenic potency was expressed by determining the β-galactosidase activity (EC50) of the tuber extracts in relation to 17β-estradiol. Twenty-four and 22 of the plant tuber ethanolic extracts interacted with hERα and hERβ, respectively, with a higher relative estrogenic potency with hERβ than with hERα. Antiestrogenic activity of the plant extracts was also determined by incubation of plant extracts with 17β-estradiol prior to YES assay. The plant extracts tested exhibited antiestrogenic activity. Both the estrogenic and the antiestrogenic activity of the tuber extracts were metabolically activated with the rat liver S9-fraction prior to the assay indicating the positive influence of liver enzymes. Correlation analysis between estrogenic potency and the five major isoflavonoid contents within the previously HPLC-analyzed tuberous samples namely puerarin, daidzin, genistin, daidzein, and genistein revealed a negative result.
Resumo:
Male sex determination in humans is controlled by the SRY gene, which encodes a transcriptional regulator containing a conserved high mobility group box domain (HMG-box) required for DNA binding. Mutations in the SRY HMG-box affect protein function, causing sex reversal phenotypes. In the present study, we describe a 19-year-old female presenting 46,XY karyotype with hypogonadism and primary amenorrhea that led to the diagnosis of 46,XY complete gonadal dysgenesis. The novel p.E89K missense mutation in the SRY HMG-box was identified as a de novo mutation. Electrophoretic mobility shift assays showed that p.E89K almost completely abolished SRY DNA-binding activity, suggesting that it is the cause of SRY function impairment. In addition, we report the occurrence of the p.G95R mutation in a 46,XY female with complete gonadal dysgenesis. According to the three-dimensional structure of the human SRY HMG-box, the substitution of the conserved glutamic acid residue by the basic lysine at position 89 introduces an extra positive charge adjacent to and between the positively charged residues R86 and K92, important for stabilizing the HMG-box helix 2 with DNA. Thus, we propose that an electrostatic repulsion caused by the proximity of these positive charges could destabilize the tip of helix 2, abrogating DNA interaction.
Resumo:
Both genetic background and diet have profound effects on plasma lipid profiles. We hypothesized that a high-carbohydrate (high-CHO) diet may affect the ratios of serum lipids and apolipoproteins (apo) differently in subjects with different genotypes of the SstI polymorphism in the apoCIII gene (APOC3). Fifty-six healthy university students (27 males and 29 females, 22.89 ± 1.80 years) were given a washout diet of 54% carbohydrate for 7 days, followed by a high-CHO diet of 70% carbohydrate for 6 days without total energy restriction. Serum triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), apoB100, apoAI, and the APOC3 SstI polymorphism were analyzed. The ratios of serum lipids and apoB100/apoAI were calculated. At baseline, the TG/HDL-C ratio was significantly higher in females, but not in males, with the S2 allele. The differences in the TG/HDL-C ratio between genotypes remained the same after the washout and the high-CHO diet in females. When compared with those before the high-CHO diet, the TC/HDL-C (male S2 carriers: 3.13 ± 1.00 vs 2.36 ± 0.65, P = 0.000; male subjects with the S1S1 genotype: 2.97 ± 0.74 vs 2.09 ± 0.55, P = 0.000; female S2 carriers: 2.68 ± 0.36 vs 2.24 ± 0.37, P = 0.004; female subjects with the S1S1 genotype: 2.69 ± 0.41 vs 2.09 ± 0.31, P = 0.000) and LDL-C/HDL-C (male S2 carriers: 1.44 ± 0.71 vs 1.06 ± 0.26, P = 0.012; male subjects with the S1S1 genotype: 1.35 ± 0.61 vs 1.01 ± 0.29, P = 0.005; female S2 carriers: 1.18 ± 0.33 vs 1.00 ± 0.18, P = 0.049; female subjects with the S1S1 genotype: 1.18 ± 0.35 vs 1.04 ± 0.19, P = 0.026) ratios were significantly decreased after the high-CHO diet regardless of gender and of genotype of the APOC3 SstI polymorphism. However, in female S2 carriers, the TG/HDL-C (1.38 ± 0.46 vs 1.63 ± 0.70, P = 0.039) ratio was significantly increased after the high-CHO diet. In conclusion, the high-CHO diet has favorable effects on the TC/HDL-C and LDL-C/HDL-C ratios regardless of gender and of genotype of the APOC3 SstI polymorphism. Somehow, it enhanced the adverse effect of the S2 allele on the TG/HDL-C ratio only in females.
Resumo:
The actions of thyroid hormone (TH) on pancreatic beta cells have not been thoroughly explored, with current knowledge being limited to the modulation of insulin secretion in response to glucose, and beta cell viability by regulation of pro-mitotic and pro-apoptotic factors. Therefore, the effects of TH on proinsulin gene expression are not known. This led us to measure: a) proinsulin mRNA expression, b) proinsulin transcripts and eEF1A protein binding to the actin cytoskeleton, c) actin cytoskeleton arrangement, and d) proinsulin mRNA poly(A) tail length modulation in INS-1E cells cultured in different media containing: i) normal fetal bovine serum - FBS (control); ii) normal FBS plus 1 µM or 10 nM T3, for 12 h, and iii) FBS depleted of TH for 24 h (Tx). A decrease in proinsulin mRNA content and attachment to the cytoskeleton were observed in hypothyroid (Tx) beta cells. The amount of eEF1A protein anchored to the cytoskeleton was also reduced in hypothyroidism, and it is worth mentioning that eEF1A is essential to attach transcripts to the cytoskeleton, which might modulate their stability and rate of translation. Proinsulin poly(A) tail length and cytoskeleton arrangement remained unchanged in hypothyroidism. T3 treatment of control cells for 12 h did not induce any changes in the parameters studied. The data indicate that TH is important for proinsulin mRNA expression and translation, since its total amount and attachment to the cytoskeleton are decreased in hypothyroid beta cells, providing evidence that effects of TH on carbohydrate metabolism also include the control of proinsulin gene expression.
Resumo:
Seed coat is a specialized maternal tissue that interfaces the embryo and the external environment during embryogenesis, dormancy and germination. In addition, it is the first defensive barrier against penetration by pathogens and herbivores. Here we show that Albizia lebbeck seed coat dramatically compromises the oviposition, eclosion and development of the bruchid Callosobruchus maculatus. Dietary supplementation of bruchid larvae with A. lebbeck seed coat flour causes severe weight loss and reduces survival. By means of protein purification, mass spectrometry and bioinformatic analyses, we show that chitin-binding vicilins are the main source of A. lebbeck tegumental toxicity to C. maculatus. At concentrations as low as 0.1%, A. lebbeck vicilins reduce larval mass from 8.1 ± 1.7 (mass of control larvae) to 1.8 ± 0.5 mg, which corresponds to a decrease of 78%. Seed coat toxicity constitutes an efficient defense mechanism, hindering insect predation and preventing embryo damage. We hypothesize that A. lebbeck vicilins are good candidates for the genetic transformation of crop legumes to enhance resistance to bruchid predation.
Resumo:
Liver cirrhosis is one of the most common diseases of Chinese patients. Herein, we report the high expression of a newly identified histone 3 lysine 4 demethylase, retinoblastoma binding protein 2 (RBP2), and its role in liver cirrhosis in humans. The siRNA knockdown of RBP2 expression in hepatic stellate cells (HSCs) reduced levels of α-smooth muscle actin (α-SMA) and vimentin and decreased the proliferation of HSCs; and overexpression of RBP2 increased α-SMA and vimentin levels. Treatment with transforming growth factor β (TGF-β) upregulated the expression of RBP2, α-SMA, and vimentin, and the siRNA knockdown of RBP2 expression attenuated TGF-β-mediated upregulation of α-SMA and vimentin expression and HSC proliferation. Furthermore, RBP2 was highly expressed in cirrhotic rat livers. Therefore, RBP2 may participate in the pathogenesis of liver cirrhosis by regulating the expression of α-SMA and vimentin. RBP2 may be a useful marker for the diagnosis and treatment of liver cirrhosis.
Resumo:
Peroxisome proliferator activator receptor-gamma (PPARγ) is a ligand-activated transcriptional factor involved in the carcinogenesis of various cancers. Insulin-like growth factor-binding protein-3 (IGFBP-3) is a tumor suppressor gene that has anti-apoptotic activity. The purpose of this study was to investigate the anticancer mechanism of PPARγ with respect to IGFBP-3. PPARγ was overexpressed in SNU-668 gastric cancer cells using an adenovirus gene transfer system. The cells in which PPARγ was overexpressed exhibited growth inhibition, induction of apoptosis, and a significant increase in IGFBP-3 expression. We investigated the underlying molecular mechanisms of PPARγ in SNU-668 cells using an IGFBP-3 promoter/luciferase reporter system. Luciferase activity was increased up to 15-fold in PPARγ transfected cells, suggesting that PPARγ may directly interact with IGFBP-3 promoter to induce its expression. Deletion analysis of the IGFBP-3 promoter showed that luciferase activity was markedly reduced in cells without putative p53-binding sites (-Δ1755, -Δ1795). This suggests that the critical PPARγ-response region is located within the p53-binding region of the IGFBP-3 promoter. We further demonstrated an increase in PPARγ-induced luciferase activity even in cells treated with siRNA to silence p53 expression. Taken together, these data suggest that PPARγ exhibits its anticancer effect by increasing IGFBP-3 expression, and that IGFBP-3 is a significant tumor suppressor.
Resumo:
Brazil is the third largest producer of pineapple (Ananas comosus) and the market for fresh pineapple is sustained by the Hawaii and Perola cultivars. In this work the Perola cultivar was divided into three main parts, shell, core and pulp, for characterization. Moisture in the pulp was higher (between 10 and 15%) than in the shell and core. The amount of protein was higher in the core (35%) than in the pulp and shell. Perola contained relatively low concentrations of total ascorbic acid in the edible parts, although higher levels of ascorbic acid in the shell. Citric acid corresponded to almost 60% of the total organic acids. The total soluble sugars [~7-12% (FW)] were predominantly sucrose, fructose and glucose. The core had almost twice as much total sugar (12%) than the pulp (6.8%). The amount of insoluble dietary fiber was around 1%, and the soluble fiber was less than 0.1%. The pulp showed the highest concentration of polyphenols (0.49%) and antioxidant activity (33 µmol.g-1) out of the parts. The consumption of the pineapple pulp or core produced a high glycemic index (~93%), but considering the glycemic load, this fruit can be considered as low dietary.
Resumo:
Small non-coding RNAs have numerous biological functions in cell and are divided into different classes such as: microRNA, snoRNA, snRNA and siRNA. MicroRNA (miRNA) is the most studied non-coding RNA to date and is found in plants, animals and some viruses. miRNA with short sequences is involved in suppressing translation of target genes by binding to their mRNA post-transcriptionally and silencing it. Their function besides silencing of the viral gene, can be oncogenic and therefore the cause of cancer. Hence, their roles are highlighted in human diseases, which increases the interest in using them as biomarkers and drug targets. One of the major problems to overcome is recognition of miRNA. Owing to a stable hairpin structure, chain invasion by conventional Watson-Crick base-pairing is difficult. One way to enhance the hybridization is exploitation of metal-ion mediated base-pairing, i. e. oligonucleotide probes that tightly bind a metal ions and are able to form a coordinative bonds between modified and natural nucleobases. This kind of metallo basepairs containing short modified oligonucleotides can also be useful for recognition of other RNA sequences containing hairpin-like structural motives, such as the TAR sequence of HIV. In addition, metal-ion-binding oligonucleotides will undoubtedly find applications in DNA-based nanotechnology. In this study, the 3,5-dimethylpyrazol-1-yl substituted purine derivatives were successfully incorporated within oligonucleotides, into either a terminal or non-terminal position. Among all of the modified oligonucleotides studied, a 2-(3,5-dimethylpyrazol-1-yl)-6-oxopurine base containing oligonucleotide was observed to bind most efficiently to their unmodified complementary sequences in the presence of both Cu2+ or Zn2+. The oligonucleotide incorporating 2,6-bis(3,5-dimethylpyrazol-1-yl)purine base also markedly increased the stability of duplexes in the presence of Cu2+ without losing the selectivity.
Resumo:
AbstractThe aim of this study was to analyze the impact that heat treatment with salts and freezing processes on the sensory, instrumental, and physico-chemical characteristics of fried potatoes of the Monalisa cultivar. The potatoes were blanched in distilled water (P); sodium chloride solution (B1); calcium chloride solution (B2), and a solution with both of these salts (B3). They were then pre-cooked and frozen for 24 hours and for 30 days. After frying, sensory characteristics were analyzed (color, texture, flavor, oiliness), along with overall preference and instrumental determinations of texture, color, and oil content. Further tests were conducted on the sample with the best results in the sensory analysis (B1), along with sample P as a control, to determine granule microstructure, carbohydrate fractions, glycemic index, and glycemic load. Blanching B3, despite reducing oil absorption and providing less oiliness, obtained lesser overall preference. Freezing for 30 days increased the lightness, except for when sodium chloride was used, which intensified the color yellow. The use of sodium chloride did not interfere with the type of starch granules, nor with the formation of resistant starch; however, longer freezing time reduced the glycemic index and concentrated the dietary fiber content. All samples exhibited low glycemic index and moderate glycemic loads.