977 resultados para Bridge railings
Resumo:
The present randomized, controlled prospective study evaluated the histomorphological response of human dental pulps capped with two grey mineral trioxide aggregate (MTA) compounds. Pulp exposures were performed on the occlusal floor of 40 human permanent pre-molars. The pulp was capped either with ProRoot (Dentsply) or MTA-Angelus (Angelus) and restored with zinc oxide eugenol cement. After 30 and 60 days, teeth were extracted and processed for histological examination and the effects on the pulp were scored. The data were subjected to Kruskal-Wallis and Conover tests (alpha = 0.05). In five out of the 40 teeth bacteria were present in pulp tissue. No significant difference was observed between the two materials (P > 0.05) in terms of overall histological features (hard tissue bridge, inflammatory response, giant cells and particles of capping materials). Overall, 94% and 88% of the specimens capped with MTA-Angelus and ProRoot, respectively, showed either total or partial hard tissue bridge formation (P > 0.05). Both commercial materials ProRoot (Dentsply) and MTA-Angelus (Angelus) produced similar responses in the pulp when used for pulp capping in intact, caries-free teeth.
Resumo:
Objectives: To compare the response of human dental pulp capped with a mineral trioxide aggregate (MTA) and Ca(OH)(2) powder. Methods and Material: Pulp exposures were performed on the occlusal floor of 40 permanent premolars. The pulp was then capped with either Ca(OH)(2) powder (CH) or MTA and restored with resin composite. After 30 days (groups CH30 and MTA30) and 60 days (groups CH60 and MTA60), the teeth were extracted and processed for HE and categorized in a histological score system. The data were subjected to Kruskal-Wallis and Conover tests (alpha=0.05). Results: In regard to dentin bridge formation, CH30 showed a tendency towards superior performance compared to MTA30 (p>0.05), although the products showed comparable results at day 60. In the item ""Inflammation"" and ""General State of the Pulp"" (p>0.05), CH showed a tendency towards presenting a higher inflammatory response. In the item ""Other Pulpal Findings,"" MTA and Ca(OH)(2) showed equal and excellent performance after 30 and 60 days (p>0.05). Conclusion: After 30 days, Ca(OH)(2) powder covered with calcium hydroxide cement showed faster hard tissue bridge formation compared to MTA. After 60 days, Ca(OH)(2) powder or NITA materials showed a similar and excellent histological response with the formation of a hard tissue bridge in almost all cases with low inflammatory infiltrate.
Resumo:
Objective This study compared the clinical and radiographic effectiveness of mineral trioxide aggregate (MTA) and Portland cement (PC) as pulp dressing agents in carious primary teeth. Methodology Thirty carious primary mandibular molars of children aged 5-9 years old were randomly assigned to MTA or PC groups, and treated by a conventional pulpotomy technique. The teeth were restored with resin modified glass ionomer cement. Clinical and radiographic successes and failures were recorded at 6, 12, 18 and 24-month follow-up. Results All pulpotomised teeth were clinically and radiographically successful at all follow-up appointments. Six out of 15 teeth in the PC group and five out of 14 teeth in the MTA group exfoliated throughout the follow-up period. No statistically significant difference regarding dentine bridge formation was found between both groups throughout the follow-up period. As far as pulp canal obliteration is concerned, a statistically significant difference was detected at 6-month follow-up (p < 0.05), since the beginning of mineralised material deposition could be radiographically detected in 100% and 57.14% of the teeth treated with PC and MTA, respectively. Conclusions PC may serve as an effective and less expensive MTA substitute in primary molar pulpotomies. Further studies and longer follow-up assessments are needed.
Resumo:
Aim To compare the effectiveness of mineral trioxide aggregate (MTA), calcium hydroxide (CH) and formocresol (FC) as pulp dressing agents in carious primary teeth. Methodology Forty-five primary mandibular molars with dental caries in 23 children [AUTHOR QUERY: How many children?] between 5 and 9 years old were treated by a conventional pulpotomy technique. The teeth were randomly assigned to the experimental ( CH or MTA) or control ( FC) groups. After coronal pulp removal and haemostasis, remaining pulp tissue was covered with MTA paste or CH powder in the experimental groups. In the control group, diluted FC was placed with a cotton pellet over the pulp tissue for 5 min and removed; the pulp tissue was then covered with zinc oxide-eugenol (ZOE) paste. All teeth were restored with reinforced ZOE base and resin modified glass-ionomer cement. Clinical and radiographic successes and failures were recorded at 3, 6, 12, 18 and 24 month follow-up. Results Forty-three teeth were available for follow-up. In the FC and MTA groups, 100% of the available teeth were clinically and radiographically successful at all follow-up appointments; dentine bridge formation could be detected in 29% of the teeth treated with MTA. In the CH group, 64% of the teeth presented clinical and radiographic failures detected throughout the follow-up period, and internal resorption was a frequent radiographic finding. Conclusions Mineral trioxide aggregate was superior to CH and equally as effective as FC as a pulpotomy dressing in primary mandibular molars. Internal resorption was the most common radiographic finding up to 24 month after pulpotomies performed with CH.
Resumo:
Purpose: To evaluate: the in vivo pulpal response after pulpotomy with different capping agents. In addition, the in vitro cytotoxic effects of both materials were assessed by applying them on culture of pulp cells. Methods: For the in vivo test, the coronal pulp of 28 teeth of dogs was mechanically removed and the root pulps were capped with the following dental materials: Group 1: Pro-Root NITA (PRMTA); and Group 2 (control): calcium hydroxide saline paste (CH). After 60 days, the animals were sacrificed and the teeth processed for histological analysis. In the in vitro test, experimental extracts obtained from both capping agents were applied on the cultured MDPC-23 odontoblast-like cells. Results: In the root pulps capped with PRMTA or CH, coagulation necrosis partially replaced by dystrophic calcification as well as tubular dentin matrix laid down by elongated pulp cells was observed. None or mild inflammatory response occurred beneath the capped pulpal wound. Regarding the pulpal response, PRMTA and CH presented no statistical difference. However, the teeth capped CH presented greater healthy pulp loss which resulted in convex shape of the hard barrier than PRMTA. When applied on the cultured cells, it was demonstrated that PRMTA and CH solutions decreased the cell metabolic activity by 9.9% and 29.4%, respectively. CH caused higher cytotoxic effects to the MDPC-23 cells as well as deeper healthy pulp tissue loss than PRMTA. However, similar sequence of healing occurred after pulpotomy with both dental materials.
Resumo:
Various deficits in the cognitive functioning of people with autism have been documented in recent years but these provide only partial explanations for the condition. We focus instead on an imitative disturbance involving difficulties both in copying actions and in inhibiting more stereotyped mimicking, such as echolalia. A candidate for the neural basis of this disturbance may be found in a recently discovered class of neurons in frontal cortex, 'mirror neurons' (MNs). These neurons show activity in relation both to specific actions performed by self and matching actions performed by others, providing a potential bridge between minds. MN systems exist in primates without imitative and 'theory of mind' abilities and we suggest that in order for them to have become utilized to perform social cognitive functions, sophisticated cortical neuronal systems have evolved in which MNs function as key elements. Early developmental failures of MN systems are likely to result in a consequent cascade of developmental impairments characterised by the clinical syndrome of autism. Crown Copyright (C) 2001 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The internal flexibility of the central seven-membered ring of a series of tricyclic antidepressant drugs (TCAs), imipramine {l}, amitriptyline {2}, doxepin {3}, and dothiepin {4}, has been investigated by H-1 and C-13 nuclear magnetic (NMR) techniques. Two dynamic processes were examined: ring inversion and bridge flexing. H-1 NMR lineshape analysis was used to obtain ring inversion barriers for 2-4. These studies yielded energy barriers of 14.3, 16.7, and 15.7 +/- 0.6 kcal/mol for the hydrochloride salts of doxepin, dothiepin, and amitriptyline, respectively. The barriers for the corresponding free bases were lower by 0.6 kcal/mol on average. (CT1)-C-13 relaxation measurements were used to determine the degree of bridge flexing associated with the central seven-membered ring for all four compounds. By fitting the T-1 data to a two-state jump model, lifetimes and amplitudes of rapid bridge flexing motions were determined. The results show that imipramine has the fastest rate of bridge flexing, followed by amitriptyline, doxepin, and dothiepin. The pharmacological profiles of the TCAs are complex and they interact with many receptor sites, resulting in numerous side effects and a general lack of understanding of their precise mode of action in different anxiety-related disorders. They all have similar three-dimensional structures, which makes it difficult to rationalize their differing relative potency in different assays/clinical settings. However, the clear finding here that there are significantly different degrees of internal mobility suggests that molecular dynamics should be an additional factor considered when trying to understand the mode of action of this clinically important family of molecules. (C) 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90:713-721, 2001.
Resumo:
SFTI-1 is a recently discovered cyclic peptide trypsin inhibitor from sunflower seeds comprising 14 amino acid residues. It is the most potent known Bowman-Birk inhibitor and the only naturally occurring cyclic one. The solution structure of SFTI-1 has been determined by H-1-NMR spectroscopy and compared with a synthetic acyclic permutant. The solution structures of both are remarkably similar. The lowest energy structures from each family of 20 structures of cyclic and acyclic SFTI-1 have an rmsd over the backbone and heavy atoms of 0.29 Angstrom and 0.66 Angstrom, respectively. The structures consist of two short antiparallel beta -strands joined by an extended loop containing the active site at one end. Cyclic SFTI-1 also has a hairpin turn completing the cycle. Both molecules contain particularly stable arrangements of cross-linking hydrogen bonds between the beta -strands and a single disulfide bridge, making them rigid and well defined in solution. These stable arrangements allow both the cyclic and acyclic variants of SFTI-1 to inhibit trypsin with very high potencies (0.5 nM and 12.1 nM, respectively). The cyclic nature of SFTI-1 appears to have evolved to provide higher trypsin inhibition as well as higher stability. The solution structures are similar to the crystal structure of the cyclic inhibitor in complex with trypsin. The lack of a major conformational change upon binding suggests that the structure of SFTI-1 is rigid and already pre-organized for maximal binding due to minimization of entropic losses compared to a more flexible ligand. These properties make SFTI-1 an ideal platform for the design of small peptidic pharmaceuticals or pesticides. (C) 2001 Academic Press.
Resumo:
A purple acid phosphatase from sweet potato is the first reported example of a protein containing an enzymatically active binuclear Fe-Mn center. Multifield saturation magnetization data over a temperature range of 2 to 200 K indicates that this center is strongly antiferromagnetically coupled. Metal ion analysis shows an excess of iron over manganese. Low temperature EPR spectra reveal only resonances characteristic of high spin Fe(III) centers (Fe(III)-apo and Fe(III)-Zn(II)) and adventitious Cu(II) centers. There were no resonances from either Mn(II) or binuclear Fe-Mn centers. Together with a comparison of spectral properties and sequence homologies between known purple acid phosphatases, the enzymatic and spectroscopic data strongly indicate the presence of catalytic Fe(III)-Mn(II) centers in the active site of the sweet potato enzyme. Because of the strong antiferromagnetism it is likely that the metal ions in the sweet potato enzyme are linked via a mu -oxo bridge, in contrast to other known purple acid phosphatases in which a mu -hydroxo bridge is present. Differences in metal ion composition and bridging may affect substrate specificities leading to the biological function of different purple acid phosphatases.
Resumo:
This paper describes a rainfall simulator developed for field and laboratory studies that gives great flexibility in plot size covered, that is highly portable and able to be used on steep slopes, and that is economical in its water use. The simulator uses Veejet 80100 nozzles mounted on a manifold, with the nozzles controlled to sweep to and from across a plot width of 1.5 m. Effective rainfall intensity is controlled by the frequency with which the nozzles sweep. Spatial uniformity of rainfall on the plots is high, with coefficients of variation (CV) on the body of the plot being 8-10%. Use of the simulator for erosion and infiltration measurements is discussed.
Resumo:
Application of novel analytical and investigative methods such as fluorescence in situ hybridization, confocal laser scanning microscopy (CLSM), microelectrodes and advanced numerical simulation has led to new insights into micro-and macroscopic processes in bioreactors. However, the question is still open whether or not these new findings and the subsequent gain of knowledge are of significant practical relevance and if so, where and how. To find suitable answers it is necessary for engineers to know what can be expected by applying these modern analytical tools. Similarly, scientists could benefit significantly from an intensive dialogue with engineers in order to find out about practical problems and conditions existing in wastewater treatment systems. In this paper, an attempt is made to help bridge the gap between science and engineering in biological wastewater treatment. We provide an overview of recently developed methods in microbiology and in mathematical modeling and numerical simulation. A questionnaire is presented which may help generate a platform from which further technical and scientific developments can be accomplished. Both the paper and the questionnaire are aimed at encouraging scientists and engineers to enter into an intensive, mutually beneficial dialogue. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Efficient intramolecular electronic energy transfer (EET) has been demonstrated for three novel bichromophoric compounds utilizing a macrocyclic spacer as the bridge between the electronic energy donor and acceptor fragments. As their free base forms, emission from the electronically excited donor is absent and the acceptor emission is reductively quenched via photoinduced oxidation of proximate amine lone pairs. As their Zn(II) complexes, excitation of the donor results in sensitization of the electronic acceptor emission.
Resumo:
Reinforcing Brisbane’s image of itself as a “River City”, the Goodwill Bridge by Cox Rayner provides a poetic expression of crossing, while also opening up new urban connections and experiences. Review by Elizabeth Musgrave.
Resumo:
Low-density lipoprotein oxidation is implicated in the development of atherosclerosis. Plasma susceptibility to oxidation may be used as a marker of low-density lipoprotein oxidation and thus predict atherosclerotic risk. In this study the authors investigated the relationship between plasma susceptibility to oxidation and exposure to automotive pollution in a group of automobile mechanics (n = 16) exposed to high levels of automotive pollution, vs. matched controls (n = 13). The authors induced plasma oxidation by a free radical initiator and they determined susceptibility to oxidation by (1) change in absorbance at 234 nm, (2) lag time to conjugated diene formation, and (3) linear slope of the oxidation curve. Mechanics had significantly higher values (mean standard error) for change in absorbance (1.60 +/- 0.05 vs. 1.36 +/- 0.05; p < .002), and slope (1.6 x 10(-3) +/- 0.1 x 10(-3) vs. 1.3 x 10(-3) +/- 0.1 x 10(-3); p < .001), compared with controls. These results indicate that regular exposure to automotive pollutants increases plasma susceptibility to oxidation and may, in the long term, increase the risk of developing atherosclerosis.
Resumo:
The extracellular loop 3 (ECL3) of the mammalian gonadotropin-releasing hormone receptor (GnRH-R) contains an acidic amino acid (Glu(301) in the mouse GnRH-R,) that confers agonist selectivity for Are in mammalian GnRH. It is proposed that a specific conformation of ECL3 is necessary to orientate the carboxyl side chain of the acidic residue for interaction with Arg(8) of GnRH, which is supported by decreased affinity for Arg(8) GnRH but not Gln(8) GnRH when an adjacent Pro is mutated to Ala. To probe the structural contribution of the loop domain to the proposed presentation of the carboxyl side chain, we synthesized a model peptide (CGPEMLNRVSEPGC) representing residues 293-302 of mouse ECL3, where Cys and Gly residues are added symmetrically at the N and C termini, respectively, allowing the introduction of a disulfide bridge to simulate the distances at which the ECL3 is tethered to the transmembrane domains 6 and 7 of the receptor. The ability of the ECL3 peptide to bind GnRH with low affinity was demonstrated by its inhibition of GnRH stimulation of inositol phosphate production in cells expressing the GnRH-R. The CD bands of the ECL3 peptides exhibited a superposition of predominantly unordered structure and partial contributions from beta-sheet structure. Likewise, the analysis of the amide I and amide III bands from micro-Raman and FT Raman experiments revealed mainly unordered conformations of the cyclic and of the linear peptide. NMR data demonstrated the presence of a beta-hairpin among an ensemble of largely disordered structures in the cyclic peptide. The location of the turn linking the two strands of the hairpin was assigned to the three central residues L-296, N-297, and R-298. A small population of structured species among an ensemble of predominantly random coil conformation suggests that the unliganded receptor represents a variety of structural conformers, some of which have the potential to make contacts with the ligand. We propose a mechanism of receptor activation whereby binding of the agonist to the inactive receptor state induces and stabilizes a particular structural state of the loop domain, leading to further conformational rearrangements across the transmembrane domain and signal propagating interaction with G proteins. Interaction of the Glu(301) of the receptor with Arg(8) of GnRH induces a folded configuration of the ligand. Our proposal thus suggests that conformational changes of both ligand and receptor result from this interaction.