905 resultados para Brachiaria grass


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibiotics are emerging contaminants worldwide. Due to insufficient policy regulations, public awareness, and the constant exposure of the environment to antibiotic sources has created a major environmental concern. Wastewater treatment plants (WWTP) are not equipped to filter-out these compounds before the discharge of the disinfected effluent into water sources (e.g., lakes and streams) and current available technologies are not equipped to remediate these compounds from environmental sources. Hence, the challenge remains to establish a biological system to remove these antibiotics from wastewater. An invitro hydroponic remediation system was developed using vetiver grass (Chrysopogon zizanioides L. Nash) to remediate tetracycline (TC) from water. Comparative metabolomics studies were conducted to investigate the metabolites/pathways associated with tetracycline metabolism in plants and TC-degrading bacteria. The results show that vetiver plants effectively uptake tetracycline from water sources. Vetiver root-associated bacteria recovered during the hydroponic remediation trial were highly tolerant to TC (as high as 600 ppm) and could use TC as a sole carbon and energy source. Growth conditions (pH, temperature, and oxygen requirement) for TC-tolerant bacteria were optimized for higher TC remediation capability from water sources. The plant (roots and shoots) and bacterial species were further characterized for the metabolites produced during the TC degradation process using GC-MS to identify the possible biochemical mechanism involved. Also, the plant root zone was screened for metabolites/enzymes that were secreted during antibiotic degradation and could potentially enhance the degradation process. The root zone was selected for this analysis because this region of the plant has shown a greater capacity for antibiotic degradation compared to the shoot zone. The role of antioxidant enzymes in TC degradation process revealed glutathione-S-transferase (GSTs) as an important group of enzymes in both plant and bacteria potentially involved in TC degradation process. Metabolomics results also suggest potential GST activity in the TC remediation/ transformation process used by plants. This information could be useful in gaining insights for the application of biological remediation systems for the mitigation of antibiotics from waste-water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pastures containing alfalfa-grass or smooth bromegrass were stocked with .6, .8, or 1.0 cow-calf units per acre to compare cow and calf production in rotational grazing systems managed for optimum forage quality. To remove excess forage early in the grazing season, yearling heifers or steers grazed with the cows in each pasture at a stocking rate of .6 ccu per acre for the first 28, 37, and 40 days of grazing in years one, two, and three. Live forage density and days of grazing per paddock were estimated by sward height. Cows, calves, and yearlings were weighed and cows condition scored every 28 days. All cows grazed for 140 days unless forage became limiting. The cows on the smooth bromegrass pasture stocked at 1.0 cow-calf units per acre were removed after 119 days in 1994, 129 days in 1995, and 125 days in 1996. Cows on one of the alfalfagrass pastures stocked at 1.0 ccu per acre were removed after 136 days of grazing in 1996 because of lack of forage. Alfalfa-grass pastures tended to have a more consistent supply of forage over the grazing season than the bromegrass pastures. Cows grazing the alfalfa-grass pastures had greater seasonal weight gains and body condition score increases and lower yearling weight gains than the smooth bromegrass pastures. Daily and total calf weight gains and total animal production also tended to be greater in alfalfa-cool season grass pastures. Increasing stocking rates resulted in significantly lower cow body condition increases and yearling weight gains, and also increased the amounts of calf and total growing animal produced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pastures containing alfalfa-smooth bromegrass or smooth bromegrass were stocked with .6, .8, or 1.0 cow-calf units per acre to compare cow and calf production in rotational grazing systems managed for optimum forage quality. To remove excess forage early in the grazing season, yearling heifers grazed with the cows in each pasture at a stocking rate of .6 heifers per acre for the first 28 days of grazing. Live forage density and days of grazing per paddock were estimated by sward height. Cows, calves, and heifers were weighed and cows condition scored every 28 days. All cows grazed for 140 days except those grazing the smooth bromegrass pasture stocked at 1.0 cow-calf units per acre; these were removed after 119 days in 1994 and 129 days in 1995 because of lack of forage. Alfalfa-grass pastures tended to have a more consistent supply of forage over the grazing season than the bromegrass pastures. Cows grazing the alfalfa-cool season grass pastures had greater seasonal weight gains and body condition score increases and lower heifer weight gains than the smooth bromegrass pastures. Daily and total calf weight gains and total animal production also tended to be greater in alfalfa-cool season grass pastures. Increasing stocking rates resulted in significantly lower condition increases and heifer weight gains, while increasing the amounts of calf and total growing animal produced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-year-old female Lucerne Hound was presented with a one-week history of signs of progressive neck pain, inappetence, apathy, and an elevated rectal temperature. Findings of magnetic resonance imaging (MRI) were consistent with a foreign body abscess in the epidural space at the level of the first and second cervical vertebrae. A left-sided dorso-lateral atlantoaxial approach was performed, revealing an epidural abscess containing a grass awn. The clinical signs resolved within three days of surgery and the dog made a full recovery. This case report shows that grass awns can migrate to the atlantoaxial region in dogs and MRI findings lead to a suspicion of caudo-cranial migration within the spinal canal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grass carp reovirus (GCRV) is a member of the Aquareovirus genus of the family Reoviridae, a large family of double-stranded RNA (dsRNA) viruses infecting plants, insects, fishes and mammals. We report the first subnanometer-resolution three-dimensional structures of both GCRV core and virion by cryoelectron microscopy. These structures have allowed the delineation of interactions among the over 1000 molecules in this enormous macromolecular machine and a detailed comparison with other dsRNA viruses at the secondary-structure level. The GCRV core structure shows that the inner proteins have strong structural similarities with those of orthoreoviruses even at the level of secondary-structure elements, indicating that the structures involved in viral dsRNA interaction and transcription are highly conserved. In contrast, the level of similarity in structures decreases in the proteins situated in the outer layers of the virion. The proteins involved in host recognition and attachment exhibit the least similarities to other members of Reoviridae. Furthermore, in GCRV, the RNA-translocating turrets are in an open state and lack a counterpart for the sigma1 protein situated on top of the close turrets observed in mammalian orthoreovirus. Interestingly, the distribution and the organization of GCRV core proteins resemble those of the cytoplasmic polyhedrosis virus, a cypovirus and the structurally simplest member of the Reoviridae family. Our results suggest that GCRV occupies a unique structure niche between the simpler cypoviruses and the considerably more complex mammalian orthoreovirus, thus providing an important model for understanding the structural and functional conservation and diversity of this enormous family of dsRNA viruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Backgrounds and Aims Leaf functional traits have been used as a basis to categoize plants across a range of resource-use specialization, from those that conserve available resources to those that exploit them. However, the extent to which the leaf functional traits used to define the resource-use strategies are related to root traits and are good indicators of the ability of the roots to take up nitrogen (N) are poorly known. This is an important question because interspecific differences in N uptake have been proposed as one mechanism by which species coexistence may be determined. This study therefore investigated the relationships between functional traits and N uptake ability for grass species across a range of conservative to exploitative resource-use strategies.Methods Root uptake of NH4+ and NO3-, and leaf and root functional traits were measured for eight grass species sampled at three grassland sites across Europe, in France, Austria and the UK. Species were grown in hydroponics to determine functional traits and kinetic uptake parameters (Imax and Km) under standardized conditions.Key Results Species with high specific leaf area (SLA) and shoot N content, and low leaf and root dry matter content (LDMC and RDMC, respectively), which are traits associated with the exploitative syndrome, had higher uptake and affinity for both N forms. No trade-off was observed in uptake between the two forms of N, and all species expressed a higher preference for NH4+.Conclusions The results support the use of leaf traits, and especially SLA and LDMC, as indicators of the N uptake ability across a broad range of grass species. The difficulties associated with assessing root properties are also highlighted, as root traits were only weakly correlated with leaf traits, and only RDMC and, to a lesser extent, root N content were related to leaf traits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric ammonia (NH3) exchange during a single growing season was measured over two grass/clover fields managed by cutting and treated with different rates of mineral nitrogen (N) fertilizer. The aim was to quantify the total NH3 exchange of the two systems in relation to their N budget, the latter was split into N derived from symbiotic fixation, from fertilization, and from the soil. The experimental site was located in an intensively managed agricultural area on the Swiss plateau. Two adjacent fields with mixtures of perennial ryegrass (Lolium perenne L.), cocks foot (Dactylis glomerata L.), white clover (Trifolium repens L.) and red clover (Trifolium pratense L.) were used. These were treated with either 80 or 160 kg N ha−1 applied as NH4NO3 fertilizer in equal portions after each of four cuts. Continuous NH3 flux measurements were carried out by micrometeorological techniques. To determine the contribution of each species to the overall NH3 canopy compensation point, stomatal NH3 compensation points of the individual plant species were determined on the basis of NH4+ + NH3 (NHx) concentrations and pH in the apoplast. Symbiotic N2 fixation was measured by the 15N dilution method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic diversity in plant populations has been shown to affect the species diversity of insects. In grasses, infection with fungal endophytes can also have strong effects on insects, potentially modifying the effects of plant genetic diversity. We manipulated the genetic diversity and endophyte infection of a grass in a field experiment. We show that diversity of primary parasitoids (3rd trophic level) and, especially, secondary parasitoids (4th trophic level) increases with grass genetic diversity while there was no effect of endophyte infection. The increase in insect diversity appeared to be due to a complementarity effect rather than a sampling effect. The higher parasitoid diversity could not be explained by a cascading diversity effect because herbivore diversity was not affected and the same herbivore species were present in all treatments. The effects on the higher trophic levels must therefore be due to a direct response to plant traits or mediated by effects on traits at intermediate trophic levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Decomposition rates and N release patterns of turfgrass clippings from lawns are not well understood. Litter bags containing clippings were inserted into the thatch layer of a coolseason turf. The experiment was arranged as a 2 × 4 factorial in a randomized complete block design with three replicates. Treatments included four rates of N fertilizer (0, 98, 196, and 392 kg N ha-1 yr-1) and two clipping treatments (returned vs. removed). Litter bags were removed periodically over the growing season and samples were analyzed for biomass, N and C concentrations, and C:N ratio on an ash-free basis. Percentage N loss from the clippings after 16 weeks ranged from 88% to 93% at the 0 and 392 kg N ha-1 rates, respectively, and from 86% to 94% when clippings were removed (CRM) or returned (CRT), respectively. Percentage C loss from the clippings ranged from 94% to 95% at the 0 and 392 kg N ha-1 rates, respectively, and from 92% to 96% with CRM and CRT, respectively. Cumulative N release was similar across N fertilization rates, (ranging from 131 g N kg-1 to 135 g N kg-1 tissue) but was higher for CRT (151 g N kg-1 tissue) than for CRM (128 g N kg-1 tissue). Grass clippings decomposed rapidly and released N quickly when returned to the turf thatch layer. This indicates the potential for reduced N fertilization when clippings are returned. Such rapid decomposition also suggests that the contribution of grass clippings to thatch development is negligible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combined effects of salinity, temperature and cadmium stress on survival and adaptation through cadmium-binding protein (CdBP) accumulation were studied in the grass shrimp, Palaemonetes pugio. In 96-hour bioassays, shrimp were exposed to zero or one of three levels of cadmium, under one of six different salinity (15, 25, or 35$\perthous$) and temperature (20 or 30$\sp\circ$C) regimes. CdBP concentrations were quantified in survivors from the 24 exposure groups. Salinity and temperature did not affect survivorship unless the shrimp were also exposed to cadmium. Grass shrimp were most sensitive to cadmium at low salinity-high temperature, and least sensitive at high salinity-low temperature. The incidence of cadmium-associated black lesions in gill tissue was influenced by salinity and temperature stress. P. pugio produced a 10,000 dalton metallothionein-like CdBP when exposed to at least 0.1 mg Cd$\sp{2+}$/L for 96 hours. Accumulation of CdBP was increased with increases in the exposure cadmium level, increases in temperature and decreases in salinity, independently and in conjunction with one another. Maximum CdBP concentrations occurred in grass shrimp that survived the salinity-temperature-cadmium conditions creating maximum stress as measured by highest mortality, not necessarily in shrimp exposed to the highest cadmium levels. The potential utility of this method as a monitor of physiological stress in estuarine biota inhabiting metal-polluted environments is discussed. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much of the soybean plant's nitrogen requirement is supplied through nitrogen fixation when atmospheric nitrogen is converted into a usable form for the plant. Nitrogen fixation is critical for producing higher yield in soybean. For nitrogen fixation to occur, nitrogen-fixing bacteria (genus Rhizobium) need to be present in the soil. If soils do not already contain a high population of Rhizobium, these bacteria can be added either as a liquid or granular peat inoculant, or as a peat-based powder. The different forms can be seed applied or used in-furrow.